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This work presents the new Synthesized Cell Texture (SCT) algorithm for visualizing

related multiple scalar value fields within the same 3D space. The SCT method is partic-

ularly well suited to scalar quantities that could be represented in the physical domain as

size fractionated particles, such as in the study of sedimentation, atmospheric aerosols, or

precipitation.

There are two components to this contribution. First a Scaling and Distribution (SAD)

algorithm provides a means of specifying a multi-scalar field in terms of a maximum cell

resolution (or density of represented values). This information is used to scale the multi-

scalar field values for each 3D cell to the maximum values found throughout the data set,

and then randomly distributes those values as particles varying in number, size, color, and

opacity within a 2D cell slice. This approach facilitates viewing of closely spaced layers
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commonly found in sigma-coordinate grids. The SAD algorithm can be applied regardless

of how the particles are rendered.

The second contribution provides the Synthesized Cell Texture (SCT) algorithm to

render the multi-scalar values. In this approach, a texture is synthesized from the location

information computed by the SAD algorithm, which is then applied to each cell as a 2D

slice within the volume. The SCT method trades off computation time (to synthesize the

texture) and texture memory against the number of geometric primitives that must be sent

through the graphics pipeline of the host system.

Analysis results from a user study prove the effectiveness of the algorithm as a brows-

ing method for multiple related scalar fields.

The interactive rendering performance of the SCT method is compared with two com-

mon basic particle representations: flat-shaded color-mapped OpenGL points and quadri-

laterals. Frame rate statistics show the SCT method to be up to 44 times faster, depending

on the volume to be displayed and the host system.

The SCT method has been successfully applied to oceanographic sedimentation data,

and can be applied to other problem domains as well. Future enhancements include the

extension to time-varying data and parallelization of the texture synthesis component to

reduce startup time.
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CHAPTER I

INTRODUCTION

The magnitude of the problems scientists are trying to solve today necessitates the

creation of new methods for understanding complex interrelated processes. This often re-

quires the comparison of large amounts of acquired measurement data with model gener-

ated data to improve the prediction capability of the models and gain better understanding

of the problems. Additionally, models are now being tied together into systems to make

large scale predictions that are influenced by many small scale processes that affect the

accuracy of the output. In summary, scientists develop complicated models dealing with

large amounts of data that must be accurate to be useful.

For global environmental data, the accuracy is being improved by breaking down gen-

eral variables into their smaller components. One class of problems where this is the case

are those variables that represent concentrations of particulates differentiated by size. Ex-

amples include:

• Precipitates: water droplets, snow, ice crystals, and water-particulate combinations.

• Aerosols: pollutants, sea salt, and dust.

• Sediment: clay, silt, sand, and gravel.

The interrelationships of these particulates can be seen in Figure 1.1. The atmospheric

effects from various sized precipitates are present in the prevailing weather, separated into

1
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layers. Winds cause mixing in the aerosol dome, which may have several grain sizes of

sand or dust from dry areas onshore, as well as size differentiated pollutants. Within the

shallow water region, the influence of waves, tides, and changing bottom types cause mix-

ing of various sizes of sediment. All of the processes involved have a volumetric influence,

not just a surface area influence, which makes understanding the overall effect more com-

plicated. Models are incorporating variables that describe these detailed subprocesses in

order to improve the accuracy of future predictions.

Figure 1.1 Littoral Region.

An area of focus for this dissertation is in the visualization of output from coupled sedi-

ment dynamics and optics models in shallow water [30]. These models compute quantities

of sediment being entrained and transported in complex coastal environments with mixed
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sediment types. Some studies use bottom boundary layer models to examine near-bottom

processes, while others are concerned with upper water column sediment distributions.

The goal is to develop the ability to predict the impact of the suspended sediment optical

fields on visibility in support of naval operations such as mine warfare. Intelligently de-

signed visualization techniques can help the scientist with the analysis of these physical

processes. This research presents theSynthesized Cell Texture(SCT) algorithm, which is

a new browsing method to view concentrations of size fractionated particulates in large

datasets. The SCT method can be applied as one layer to see effects over large areas, or

as multiple layers at once over a small area so volumetric effects can be understood. The

scientist can use the SCT method as an analysis tool to help visually determine whether

there are problems in the model output and to help assess the accuracy of the processes

represented.

1.1 Multiple Scalar Field Visualization for Environmental Data

Concentrations of related environmental variables are often reported as mass per unit

volume magnitudes, or multi-valued scalar fields. Although this puts all quantities on an

equal basis for comparison, it does not give a direct indication of how many particles of

different sizes are actually suspended. What this means is that for each physical point in

space, or grid point in the model, there are concentration values for a number of different

grain sizes. Since the magnitudes are differentiated by size, the values form a group of

related scalar fields, sometimes referred to as “profiles.” The combined effect is important
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for the production of accurate model results, but the added dimension creates difficulties

for existing visualization methods. In addition to longitude, latitude, depth (or altitude),

and time, there is now a fifth dimension, grain size, making it difficult to display values

individually using conventional methods [32, 68]. This extra dimension is problematic for

off-the-shelf visualization software, and has until recently only been visualized as a single

combined entity throughout a volume, or as individual scalar values.

An example is shown in Figure 1.21, where columns of color-mapped spheres on a

texture-mapped ocean bottom show the combined magnitudes for suspended sediment

concentrations (SSC) in a shallow water region near Oceanside, California. Each sphere in

the column represents the magnitude of the summation of 20 scalar fields for one of the 31

layers in the visualization. Although the columns are rendered at every other grid location

on the texture-mapped surface, the display is still cluttered, and the visualization is not

very useful. Color-mapped 2D (horizontal) depth layers are another method commonly

used to show combined or single valued SSC.

The full profiles themselves have only been visualized at individual points or columns

of points aligned in the third dimension. For example, point profiles for overall SSC

have been used for visualization of sedimentation processes [32, 68]. For the point profile

visualization from the Oceanside dataset shown in Figure 1.3, the sediment concentration

1The red box marks the presence of the wand in the virtual environment simulator. This desktop version
of the application was used to capture screenshots at various stages of development. The wand icon may
also have a pointer extension to facilitate selection of points in the application. The virtual environment is
described in Section 1.2.
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Figure 1.2 Example Points Visualization of Sediment Concentration.

values are color-mapped on alog10 scale for a column of water2 at a grid location on a

raised area within a shallow water region (or hill location). The semicircular columns of

points indicate the individual SSC for each grain size from smallest (left) to largest (right),

where zero values are dark blue. In this case the largest grain size represented is 3000

times larger than the smallest, but concentration values very close to zero for the smaller

grain sizes are still significant. Figure 1.4 shows a similar profile for a deeper grid location

within the same shallow water region (hole location). To the novice analyst, it is not clear

how much sediment, in terms of relative numbers of suspended particles, is represented

from these views, and this method does not display an integrated view for all grid locations

throughout a volume.

2The column represents depth in the vertical direction as defined in Section 3.1.
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Figure 1.3 Point Detail View Showing SSC for the Hill Location.

Figure 1.4 Point Detail View Showing SSC for the Hole Location.
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Given the densities and particle volume information of the suspended particulates, the

concentration values can be converted to numbers of particles per unit volume. These

quantities can then be rendered using multidimensional, multivariate (MDMV) meth-

ods [77], including those for direct volume or particle rendering, as shown in Figure 1.5.

In this example rendered using the new SCT method, a twelve layer volume visualization

is depicted with the point profiles for the hill and hole locations. For the SCT method, the

magnitudes of the scalar fields are depicted with quantities of particles. Without know-

ing any of the details of the implementation, it can be quickly seen that certain particles

are stripped away within the depression, an effect known as armoring, shown in more

detail in Figure 1.6. This type of “at a glance” information can be useful for browsing

large datasets. The presence of other environmental information, such as a vector field

of currents, may provide insight into the visibility conditions near the ocean bottom over

time. For instance, mine counter measures operations require the identification or loca-

tion of objects, and a detailed visual representation of the ocean bottom may improve the

understanding of underwater conditions affecting decision making policies.

Other areas where accuracy is important are related to aerosol dispersion of such fine

particulates as sulfates, soot, dust, and sea salt [2, 18]. Climate models used to study

problems, such as global warming, generate atmospheric and oceanic circulations that

can be greatly affected by the accuracy of estimates of sunlight absorption in the atmo-

sphere. Models in the 1990’s greatly miscalculated the effects of sunlight absorption be-

cause they did not account for substantial amounts of atmospheric aerosols [18]. Recent
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Figure 1.5 Twelve Layer Visualization With Point Detail Profiles.

Figure 1.6 Close-up of the Hole Location.
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models account for these effects through the inclusion of size fractionated source distribu-

tions [11, 12, 13, 16, 61], and are validating the accuracy of these models with comparisons

to observed conditions [1, 43, 55, 73]. Visual techniques that can show the magnitudes of

these related scalar fields at once may help scientists better understand the complex inter-

related processes affecting the accuracy of these models.

1.2 Hypotheses

The problem domains just described are good candidates for exploration in our four-

wall virtual environment (VE)3 [4], especially for combination views involving concentra-

tions, vector quantities, and other scalar fields [32]. In this room-size VE, a scientist can

get “inside” the visualization by physically walking around a displayed grid location to

see the data from multiple viewpoints in three dimensions. This capability gives the scien-

tist additional depth to view higher dimensional data that is not available on conventional

desktop displays. However, rendering concentrations as particles at interactive frame rates

using traditional methods, such as texture-mapped primitives or basic points [36, 42], is

computationally expensive and can easily overload the VE graphics pipeline. Therefore,

this work describes an alternate means of visualizing multi-scalar data with the introduc-

tion of the new SCT algorithm. This hybrid technique indicates the added dimension of a

scalar profile variable within a three-dimensional (3D) cell in terms of relative quantities

of different size particles.

3The VE is similar to a CAVER©, and the recursive acronym stands for CAVE Automatic Virtual Envi-
ronment.
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Given the particle representation of the SCT method, there are instances where this

technique can be applied to some advantage over other state-of-the-art methods. The type

of information conveyed is not easily quantified against a visual scale, yet the SCT method

does give the viewer a general idea about what is present that can be ascertained quickly,

or “at a glance”. Thus the SCT method has certain characteristics that make it a useful

browsing technique. Using perceptual concepts from Healey [20, 22] and Ware [71], a

visual browsing technique can be developed that enables the user to quickly perform:

1. Feature Detection: whether information is present, and

2. Feature Identification: whether some feature stands out that should be investigated.

The goal of this research is to show that the SCT method satisfies these requirements

by comparing it with another new glyph-based Wedges visualization method that also

incorporates state-of-the-art perceptual characteristics in a user study. Statistical analysis

will prove that the SCT method can be used for feature detection and identification for

several size areas (regions) from multiple sedimentation datasets. The amount of time

taken for a person to complete a task that centers around these requirements is measured

and compared, as well as the correctness of the result. This is expressed in the form of two

formal (paired) hypotheses:

HT0: There is no significant difference in the amount of time it takes to complete a

browsing task between the two methods over different size areas. This is the null hypoth-

esis for time.
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HTA: It takes significantly less time to complete a browsing task using the SCT method

vs. using the Wedges method over different size areas (the alternate hypothesis for time).

HC0: There is no significant difference in the correctness of the result during the

completion of a browsing task between the two methods over different size areas. This is

the null hypothesis for correctness.

HCA: There is a significant difference in the correctness of the result during the com-

pletion of a browsing task between the two methods over different size areas (the alternate

hypothesis for correctness).

Statistical analysis of the results will prove that the null hypothesisHT0 is rejected,

showing that it takes significantly less time to perform two specific browsing tasks using

the SCT method for feature identification and detection for several different size areas. Ad-

ditionally it will be shown that hypothesisHC0 will not be rejected, and the SCT method

will be proven to be no less accurate than the Wedges method. Chapter 4 documents the

user study results that prove these hypotheses.

Note that this study is conducted with sedimentation data in the Mississippi State Uni-

versity ERC CAVE-like VE facility, known as theCOVE. The results are only shown to

be valid in this context, although it is fully expected that similar results could be achieved

with other types of related data (such as precipitation, airborne pollutants, dust, etc.) in

other visualization environments.

The SCT algorithm can display the additional information throughout a prescribed vol-

ume at a desired slice resolution, given existing hardware constraints. The performance
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and interactivity of the SCT method is of interest when compared with other particle ren-

dering methods. As a measure of how well this method can be applied in the COVE, the

rendering performance of the SCT method is compared with two basic particle rendering

methods as part of this research: flat-shaded color-mapped points and quadrilaterals. Both

methods can be considered simpler (and faster) forms of the general texture-mapped prim-

itives approach. Results show that the SCT method can render scenes interactively up to

44 times faster than the other two particle rendering methods. These results are presented

in Chapter 5.

The structure of this document is organized into sections on the research, implemen-

tation, and analysis required to introduce the SCT visualization technique for representing

related multi-dimensional variables in complex physical domains. Chapter 2 describes

the background and related work for visualization of scalar data. Chapter 3 presents the

approach used in the development of the algorithm along with the implementation and

application to sedimentation data sets [68]. The user study design, execution, and results

are included in Chapter 4. Performance comparisons are made in Chapter 5 [69], and

Chapter 6 provides conclusive remarks and points out areas for future work.

Portions of this research have been published in citations [32, 67, 68, 69] and should

be consulted for additional information.
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CHAPTER II

BACKGROUND

Effectively representing MDMV scalar fields is an active area of research in informa-

tion visualization. Two important goals are: (i) to discover the values for data within a

region, and (ii ) locate data with specific values [75]. Good visual methods often help the

researcher find areas of interest and correlations between variables. With the ability of

computers to convey more information at once comes a challenge to determine what vi-

sual attributes are best perceived by humans [71]. Hence evaluating the effectiveness of

a technique is dependent on perception-based user studies [7], as well as rendering speed

and memory efficiency.

An excellent overview and classification scheme for MDMV visualizations is pre-

sented by Wong and Bergeron [77]. Statistical and information analysis motivates the

use of various 2D and 3D graphical methods [33, 62, 63, 64], with the objective of con-

veying information aboutm-dimensional dependent variables (the multivariate aspect) for

n-dimensional independent variables (the multidimensional aspect). For our sedimenta-

tion application, SSC represents the dependent variable for the 5D independent variables

of longitude, latitude, depth, time, and grain size. Animation is often used to convey

changes in dependent variables over time, but displaying SSC values for the remaining

13
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four dimensions in 3D space is more problematic. One category of MDMV methods en-

codes data information to color and geometric attributes of an object (often termed a glyph

or icon) [38, 39].

This chapter describes related literature from the fields of perceptual visualization

(Section 2.1), particle rendering (Section 2.2), and volume visualization (Section 2.3).

Concepts from these areas were applied iteratively to develop the effective texture-based

SCT method, as well as another state-of-the-art glyph-based method, termedWedges.

2.1 Perceptual Visualization

The study of perceptual characteristics played a key role in the development of both

the SCT and Wedges methods. Lessons learned from understanding how artists employ

techniques to draw the viewer’s interest to certain areas of a painting helped considerably

in the effective use of textures in the SCT method. How well certain information “pops

out” from the surrounding visualization is the focus of literature on pre-attentive process-

ing, which influenced the glyph design of both methods. This section describes how the

work in these areas of perceptual visualization relate to the SCT and Wedges methods. For

details about the implementation of the SCT method, see Chapter 3. The evolution of the

Wedges method is described in Chapter 4.

Laidlaw [37] summarizes the recent work in using textures for visualization by com-

paring concepts from computer visualization and the art of three famous painters: van

Gogh, Monet, and Cezanne. These artists were proficient at using multiple layers to con-
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vey subtle differences in visualization. He presents the concept of “underpainting” to

describe how Van Gogh used “rough value sketching” of the entire painting as a way to

help organize or group the canvas into distinct parts. Then detailed brush strokes would

be added to define specific areas to draw the attention of the viewer. From this article the

following quote describing how these artists use underpainting and detail strokes to draw

the viewer into the scene is extremely relevant:

Similarly, brush-stroke size and proximity depict density, weight, and veloc-
ity. In our visualizations, we want to capture this marriage between direct
representation of independent data and the overall intuitive feeling of the data
as a whole.

Other authors describe similar concepts, often combining traditional techniques with

textures to represent multiple data values at a point [21, 22, 26, 34, 60, 71, 72, 76]. The

SCT method is an excellent example of a technique that gives that “overall intuitive feeling

of the data as a whole.” This is one attribute that makes it a viable method for information

browsing (see Figure 1.5).

In the area of pre-attentive processing, the following attributes are employed in the

SCT and Wedges methods to make certain information “pop out” [20, 71]:

• hue,

• intensity,

• size,

• orientation,

• numerosity, and

• spatial position.
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The SCT method makes particularly good use of hue, numerosity, and particle size

to distinguish between amounts of different categories of sediment. The Wedges method

primarily uses grayscale intensity, size, hue, and orientation to display differences in the

multiple scalar fields. Both methods depend heavily on spatial positioning to convey lo-

cation information. Whereas the SCT method is useful for identifying small regions of

interest, the Wedges method provides more detailed information at a particular grid lo-

cation. This method uses an oriented grouping of wedges where intensity represents the

number of particles of each scalar field, color shows the category of sediment, and the

size of the wedges indicates the relative grain size of the bin particle size, as shown in

Figure 2.1. In Chapter 4 both state-of-the-art methods are evaluated in a user study to

measure their effectiveness for visual browsing tasks.

Figure 2.1 Wedges Method Over Nine Grid Locations on One Layer.
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2.2 Particle Rendering

In terms of rendering particle information, a quadrilateral can be considered a glyph

with the attributes of color (four components), shape, size, and texture. Any number of

these attributes could be mapped to the magnitude of a different scalar field, but perception-

based studies determine which attributes can be effectively utilized [71]. Flow visualiza-

tion often uses texture-mapped quadrilaterals (or basic color-mapped points) to represent

particles [36, 42, 44, 45, 57]. The SCT algorithm incorporates the concept of a glyph at

two levels. In this study, an SCT particle primitive is considered to be a4x4 array of pix-

els from a 2D texture with the same attributes as a quadrilateral. However, an SCT glyph

could also represent the information for a 3D cell volume (containing many particles) at a

spatial location.

Particles for flow visualization may also be rendered by some number of pixels in

an overall texture that are then advected over time. These include such methods as spot

noise [5], line integral convolution (LIC) [54], and texture advection [23, 27, 28]. These

pixel-based particles are generally massless and are injected into the flow at a specific

time. Size, color, and shape variability are often used to indicate direction and orientation

of flow, or magnitude of a scalar field.

2.3 Volume Visualization

Scalar fields are commonly represented by volume visualization methods, which gen-

erally involves the rendering of volumetric data sets representing 1D scalar quantities at
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specific points [29, 47]. Historically these were medical data sets containing values at reg-

ularly sampled points (as on an implicit regular 3D grid), but now the field has expanded

to include other types of data. The challenge is to classify what the scalar values repre-

sent (such as tissue or bone) as indicated by different colors and opacities. Rendering the

values is often done using one of two general approaches. The first renders 3D polyg-

onal surfaces constructed from scalar values in the volume, and the second renders the

scalar values directly [47]. The latter approach is known in the literature as direct volume

rendering (DVR) [40]. Several methods approximate the underlying integral defining the

blending of values (such as splatting or texture-based methods), or show 2D slices of the

volume (such as projection-based methods).

The SCT method is similar in concept to the DVR approach. Different colors and

opacities depict the various classifications of scalar values. In order for a DVR method

to be rendered, the colors and opacities must be obtained at discrete intervals along a

linear path and then composited in a front to back order. How the colors and opacities are

computed at specific points along the path differentiates the various DVR algorithms. The

time spent computing the values determines how interactive the algorithm will be. Many

basic DVR algorithms use trilinear interpolation to compute the values within 3D cells (or

voxels) defined by the grid points.

Research has also been done on trying to show two or three independent variables at

once in a volume visualization [3]. More work is needed on effectively representing larger



www.manaraa.com

19

numbers of scalars simultaneously. The SCT algorithm represents multiple scalar fields as

particles differentiated by size and color in a synthesized texture.

With the advent of 3D texture mapping hardware, direct volume rendering can be

accomplished at interactive frame rates [17]. The basic idea is to use the scalar field as

a 3D texture. A number of equidistant planes parallel to the image plane are clipped

against the bounding volume boundaries, and the texture hardware trilinear interpolation

mechanism computes the values on the planes. Then the hardware blending capability

blends the planes from back to front, such that the viewer sees the combined contribution

of all the planes. A 2D texture mapping algorithm can provide a 3D rendered image if the

planes are perpendicularly aligned along one of the primary axes, and viewing is parallel

to the chosen axis. The SCT approach utilizes 2D texture mapping.

Details about the texture synthesis portion of the SCT method are presented in Chap-

ter 3.

2.4 Sedimentation

SSC is one of the most difficult sedimentation variables to visualize, since it varies

with longitude, latitude, depth, time, and grain size. At each grid point, there are values

of SSC for 20 different sediment grain sizes. The order-of-magnitude range in sediment

size makes it difficult to visually show differences in grain size on a linear scale, and so

detailed views are shown with log scale color mapping (see Figure 1.3). Although this

method allows viewing all grain sizes for a column of water, multiple simultaneous detail



www.manaraa.com

20

views across large areas are not readily viewed as a single combined visualization. Other

methods for viewing either overall combined SSC or individual grain size values for SSC

include: point visualizations throughout a volume of interest as shown in Figure 1.2, or 2D

color-mapped surfaces for a particular depth. Generally, SSC cannot be visualized directly

using popular off-the-shelf tools, since the SSC variable is 5D. Thus the analysis of the

SSC distribution can be difficult [32].
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CHAPTER III

APPROACH

This chapter describes the approach used to develop the SCT visualization algorithm.

The environmental data and grid characteristics are detailed in Section 3.1, and the algo-

rithm implementation is presented in Section 3.2, including texture calculations described

in Section 3.2.2.

First this method provides a means of creating a visualization of a volumetric multi-

scalar field that can be specified in terms of a maximum cell resolution (or density of

represented values). This maximum resolution is used to scale the multi-scalar field for

the data over the entire volumetric area, including all time series. Therefore a prescribed

volume of data for any time step can be displayed and compared relative to the same

scale with other areas within the same time step or across multiple time steps. The values

within a 3D cell are positioned as nonoverlapping entities equally distributed within a 2D

slice centered at the original grid point. In other words, this algorithm scales the data

for each cell to the maximum values found throughout the data set, and then randomly

distributes the values within a cell slice. This portion of the SCT method is termed the

Scaling and Distribution(SAD) algorithm. This approach facilitates viewing of closely

spaced layers commonly found in sigma-coordinate (terrain following) grids that have

21
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logarithmic spacing in the vertical direction [51]. The SAD portion of the algorithm can

be applied regardless of how the multi-scalar entities are rendered (i.e. as parts of a 2D

texture-mapped slice, color-mapped point primitives, or color-mapped quadrilaterals).

The second contribution provides a hardware texture mapping algorithm to render the

multi-scalar values. In this approach, a texture is synthesized from the location information

from the first step, which is then applied to each cell 2D slice within the volume. This

method trades off computation time (to synthesize the texture) and texture memory against

the number of geometric primitives that must be sent through the graphics pipeline of the

host system. This algorithm will be referred to as theSynthesized Cell Texture(SCT)

algorithm. The SCT algorithm incorporates the SAD algorithm as part of the rendering of

the volume visualization. Therefore SCT will also refer to the visualization algorithm in

general.

3.1 Sedimentation Data Grid Characteristics

Although the SCT method can be applied to any scalar where different characteristics

can be represented by pixel color, pixel opacity, and number of pixels per color, it is

particularly well suited to multi-dimensional variables that have typically been represented

as profiles of size fractionated scalar values. Grids used in numerical models often have

a sigma-coordinate in the vertical direction. This is not a requirement for the algorithm,

but since slicing is done along these vertical layers, the resulting visualization will appear

more volumetric when the layers are close together.
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The wave-current interaction bottom boundary layer model (BBLM) described by

Keen and Glenn [31] is used to calculate suspended sediment profiles. This model is

an extended version of the suspended-sediment-stratified BBLM of Glenn and Grant [14].

The model computes sediment concentrations for a number of size bins on a structured

sigma-coordinate grid that has 30 levels and varies in time. A typical grid with the coor-

dinate axes conventions used throughout the rest of this document is shown in Figure 3.1.

The grid spacing is dependent on the height of the wave boundary layer and is variable

in space and time. The resulting resolution near the ocean bed can be less than 0.001m.

For more information about coastal sediment transport and modeling see Nielson [49] and

Fredsoe [9].

Figure 3.1 Plot of a Sigma-coordinate System at a Single Time Step.
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Figure 3.2 Typical Grain Size Distribution for Oceanside Dataset (in Units ofΦ andm).

A typical sedimentation model contains up to 20 different size classes (bins) of sed-

iment, ranging from 9Φ (∼ 2 × 10−6 m), to -1.73Φ (∼ 3 × 10−3 m) in diameter [35],

as shown in Figure 3.2. In this context,Φ = −log2(d) whered is the diameter of a grain

in mm (10−3 m). Φ is a commonly used binary logarithmic scale in sedimentation that

converts the grain size distributions to a linear scale. ThisΦ scale is used in the imple-

mentation of the SCT algorithm as described in Section 3.2. The 5D suspended sediment

concentration (SSC) varies with longitude, latitude, depth, time, and grain size. In other

words, at each grid point, there are values of SSC for up to 20 different sediment grain

sizes, with relevant information densely packed near the boundary layer just above the sea

floor.
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Seven datasets were used in this research representing various geographic locations,

weather conditions, dimensions, sediment sizes, and time increments as shown in Ta-

ble 3.1. Maps illustrating the geographical locations for each dataset are available in

Appendix A.

Table 3.1 Dataset Descriptions.

Dimensions Sediment Time Increment
Name Description I J K Classes Steps Time Range (hours)
andrew LA Coast 355 262 31 20 30 08/24/1992 12:00 2

Hurricane Andrew 08/27/1992 00:00
duck10 Duck, NC 36 30 31 10 41 10/14/1997 12:00 6

Northeaster 10/24/1997 12:00
duck20 Duck, NC 36 30 31 20 41 10/14/1997 12:00 6

Northeaster 10/24/1997 12:00
gbay Great Bay, NJ 177 198 31 20 29 07/27/2000 12:00 1

Northeaster 07/28/2000 16:00
msb MS Sound 182 139 31 15 32 03/04/1997 03:00 3

Weak Cold Front 03/08/1997 00:00
mssnd MS Sound 111 51 31 10 3 08/18/1969 06:00 1

Hurricane Camille 08/18/1969 08:00
oside Oceanside, CA 32 22 31 20 11 10/18/1995 00:28 varies

Normal 10/27/1996 21:42

3.2 SCT Algorithm Implementation

In this discussion, the termcell refers to a 3D volume immediately surrounding a

grid location in the physical domain with dimensions∆x∆y∆z. A slice refers to the 2D

texture-mapped primitive for a cell centered at the grid location as described by Vickery

in [68] and shown in Figure 3.3. The 2D texture is generated from information about the

physical scalar quantities within a 3D cell. The termpixel refers to the smallest unit of the

2D texture that has both color and opacity. Since the grid points are packed so densely in
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the vertical direction close to the sea floor (the main area of interest), the physical scalar

quantities for an entire 3D volume can be visualized as layers comprised of 2D slices. The

termglyph will refer to the entity that represents the scalar values for a cell, whether it is

a slice of the SCT algorithm, a Wedges glyph, or any similar construct. The termparticle

primitive will refer to the entity that represents a particle, whether it is a4x4 grouping

of pixels in the texture, a color-mapped point primitive specified using the OpenGLR©

computer graphics language (an OpenGL point), or a color-mapped quadrilateral [78].

The termslice resolutionis the program selectable option that sets the maximum number

of particle primitives per grid location. This is computed asRslice in Section 3.2.2, and

can be adjusted based on hardware capability.

Figure 3.3 New Grid Slice With Eight Triangles Superimposed on the Original Grid.

The basis of the SCT method is a 2D texturing algorithm rendered in the CAVE-like

VE. When data values are located at the grid points, choices must be made as to how
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coloring or texture mapping is done for the areas between the grid points. In the simplest

case, this can be considered in terms of color mapping, where the color represents the

value of the data. If the data values between grid points vary by some linear or other

relationship, then the color also varies and is blended as shown in the upper left corner of

Figure 3.4. In this 2D example, the colored circles represent the current data value at the

grid points. For the four points in the upper left of the figure, the data varies between the

grid points, and so the color is blended between the two colors red and green. The problem

with this approach is that the color value for a particular grid point might be difficult to see,

especially if all the surrounding points are different colors. Since the scientists generally

like to see the actual data values from the model output, and not approximated values

between grid points, a constant value approach can be applied. In Figure 3.4, the colored

circles in the lower right section illustrate this concept. In this case the value at the point

is constant throughout the quadrilateral surrounding it, making it the same color as the

point. The scientist knows that the color value shown is from the model output data, and

not some interpolated value. The boundaries of the region surrounding the grid point are

midway between the grid points. Extending this concept to 3D means that the surrounding

volume of the grid point contains the same color.

For the SCT method, instead of color mapping the area around the grid point, a texture

map is applied that contains a representation of the data value. In this case, it is the profile

of scalar values for each grain size of SSC represented as particle primitives within the

texture slice. Additionally, since the layers in the verticalz direction are so closely packed
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Figure 3.4 Example Showing Difference Between Blended and Constant Value Coloring.

at the ocean bottom, the information for that 3D volume surrounding the grid point is

represented in the 2D slice primitive as shown in Figure 3.3. The grid is regular inx and

y, and interpolating values in these directions is trivial, but care must be taken to correctly

interpolatez, since not all points in the original quadrilateral cell are coplanar. Whereas

the OpenGL rendering pipeline breaks down the original quadrilateral into two triangles,

the new slice primitive consists of eight triangles arranged as an OpenGL triangle-fan.

This primitive accommodates all of the irregularities in thez direction within a cell.

Several horizontal texture mapped layers can be viewed together and represent the

information for the volume containing the grid points. Because the horizontal layers are

used directly, no hardware interpolation is required to represent values between grid points.

Therefore there are no extra calculations (such as a Jacobian transformation) required to

transform data from the structured sigma-coordinate grid to a regular grid, as is often

done in volume visualization [24, 46]. The data are represented directly, and colors are
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not ”smoothed” or blended within a texture slice, other than what is desired to represent

opacity.

3.2.1 System Design

This section describes the overall design of the immersive visualization system, and

the choices made in the integration of existing software with custom routines to implement

the SCT algorithm.

One of the main goals of the application design was to allow the development of new

algorithms without spending large amounts of time reimplementing common visualization

techniques. One way to do this is to use the popular Visualization Toolkit (VTK), which

is an object-oriented C++ graphics library commonly used for desktop applications [57].

In order to visualize the 5D SSC data, the convenience and flexibility offered by VTK

had to be balanced against the efficiency needed to obtain interactive frame rates in the

four wall VE [4]. This was accomplished by using the OpenGL PerformerTM application

programming interface (API) developed by Silicon Graphics, Incorporated (SGI). [6, 56].

The Performer API enables developers to optimize their applications for SGIR© computer

systems without requiring extensive knowledge of the internals for specific machines. In

this case the computer hardware that drives the CAVE-like VE has an Infinite Reality 2

graphics system specifically designed to deliver high-quality rendering of complex scenes

at consistent frame rates [48]. Effective use of the Performer API in conjunction with

the normal CAVE libraries [4] allows an application to take advantage of the specialized
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hardware functionality in the Infinite Reality 2 engine to increase performance. Since

Performer lacks the common visualization algorithms, an additional VTK class called

vtkActorToPF developed by Paul Rajlich provided the means to integrate VTK with the

Performer API [52]. This class allows normal VTK pipelines to generate graphics primi-

tives (polydata), which are then translated into Performer scene graph nodes (geodes) for

rendering in the VE.

The integrated system design is shown in Figure 3.5. One advantage of using this

combination of libraries is that a desktop display can be used at several stages of develop-

ment to verify results and isolate problems. For instance, desktop interfaces using either

scripting languages or C++ can be developed to test new VTK classes before integration

with the Performer API. Likewise, visualization can be done from the combined VTK and

Performer application before integration with the CAVE libraries.

Figure 3.5 System Design.
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3.2.2 Texture Calculations

The equations described in this section determine how the texture map is generated for

the grid points of interest, and the details about the number of pixels calculated for each

color (representing different grain sizes) to include in the texture map portion for each cell.

The sediment concentration values are in units ofkg/m3, and are calculated based on

spherical sand grains with a densityρ of 2650kg/m3 (quartz). Therefore the equation for

SSC for a specific grain size (or diameter)d is

S = P V ρ , (3.1)

where

S represents the SSC for individual grain sized within a cell (kg/m3),

P is the number of particles per cubic meter for grain sized,

V is the volume of a spherical particle of grain sized given by πd3

6
, and

ρ is the density of the particle inkg/m3.

Substituting forV , Equation (3.1) can be rewritten to give the number of particles per

cubic meter as

P ≈ S

1387.5 d3
. (3.2)
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The fractional contribution of particles for each grain size is given by

F =
P

n∑
i=1

Pi

, (3.3)

where

n is the number of grain sizes or bins,

F is the fractional particle contribution for grain sized, and

∑n
i=1 Pi represents the total number of particles within a cell.

Substituting Equation (3.2) into (3.3) and reducing yields

F =

S

d3

n∑
i=1

Si

d3
i

=
C

n∑
i=1

Ci

=
C

Ccell

, (3.4)

where

C is the individual grain size particle contribution given byS
d3 , and

Ccell is the total particle contribution for the cell

(or the cell particle contribution).

Equation (3.4) can be used to compute the number of pixels in a texture that should

have the color representingd. However, we want each 2D texture slice to represent one

cell of a volume of particles. We also want the visualization to show the differences be-

tween higher particle concentrations near the ocean bottom, and lower concentrations at

the surface, as well as differences in concentrations at the same grid location at different

times. This means that the cell with the highest concentration of particles (referred to as
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the maximum cell particle contribution described in Equation 3.5 below) should have all

pixels in the associated texture colored, and all other cells will have some lesser amount

of pixels colored. This is called thelimiting resolutionof the texture1. In the same way

that the maximum value of a scalar quantity is used to scale the other values so that a color

mapping can be applied, the limiting resolution sets the maximum cell particle contribu-

tion to be represented by the texture.

The end result is that for each cell in the volume of interest, there will be some number

of pixels colored out of a 2D texture slice that represents that cell’s particle contribution

relative to the maximum cell particle contribution. This relationship can be written as

Nslice

Rslice

=
Ccell

(Ccell)max

, (3.5)

where

Nslice is the number of colorable pixels in a texture slice (representing one cell),

Rslice is the 2D texture slice resolution

(Ccell)max is the maximum cell particle contribution throughout the volume

over all time steps (the limiting resolution).

Equation (3.5) can be rewritten to find the number of colorable pixels for a specific cell

Nslice = Rslice
Ccell

(Ccell)max

. (3.6)

1The huge numbers of particles represented here means that each pixel of the 2D texture slice represents
many particles, and comparisons of quantities in the visualization are relative, not absolute.
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Note that(Ccell)max is calculated over all time steps, but all other quantities are calculated

at a specific time step. Using Equation (3.4), the number of pixels to include for each grain

size color for a specific cell then becomes

N = F Nslice =
C

Ccell

Nslice . (3.7)

where

N is the number of pixels to color for grain sized.

3.2.3 SCT Implementation Details

The first version of the SCT algorithm converted the twenty scalar values at each grid

point represented in units ofkg/m3 to numbers of particles of each bin2 [68]. A 2D tex-

ture mapping scheme was employed to display the particles where a texture for each cell

layer was synthesized to show the relative numbers of particles assame size pixelsusing

a different color for each bin (twenty colors in all). This approach suffered from two ma-

jor shortcomings: particles of vastly different sizes were displayed as the same size, and

there were too many colors to distinguish between particle bins. From a perceptual view-

point, this experience indicated that particle primitives representing different grain sizes

needed to also vary in size so that the visual representation of mass rendered as particles

reflected the same relative mass differences within the data (see Figure 1.5). Perceptual

2In the sedimentation data, each bin represents values of a particular grain size (diameter) of sediment.



www.manaraa.com

35

guidelines also indicated that the number of hues used in a visualization should be limited

to a maximum of seven [19].

The algorithm was enhanced to allow a custom bin consolidation scheme to be applied

to reduce the number of bins to sixteen (or less), such that a particle primitive with a4x4

footprint could be used to show grain size differences3 [50, 70]. Bins may also be grouped

into more general categories to reduce the number of colors that must be represented, or an

automatic color assignment algorithm can be used. Four colors were chosen to represent

the sediment types: clay, silt, sand, and gravel [70]. The twenty bins were consolidated by

taking advantage of theΦ scale shown in Figure 3.2. For example, the Oceanside dataset

grain size distribution is shown in Table 3.2 with the category and subcategory descrip-

tions. After consolidation, the bins with redundant subcategories were combined into one

bin subcategory where each integer value ofΦ is represented, as shown in Table 3.3. To

more clearly see how this is accomplished, refer to Table 3.4, which shows the calcula-

tions for a volume of 396 grid point locations for a resolution of64x64 (4,096) particle

primitives per grid slice. The maximum number of particle primitives for the volume is

1,622,016 (396· 4,096), but only 678,951 are available, since the number used is scaled

against the maximum concentration value. The number of particles per particle primitive

is the total number of particles divided by the available primitives or 384,867,000. The

percentage used is the number of available primitives divided by the maximum for the vol-

ume or 41%. The number of particles and particle primitives does not change as a result of

3For the sedimentation data, this is the USDA soil texture classification that reduced the bins to fourteen,
although a generic bin grouping or reduction algorithm could also be used.



www.manaraa.com

36

consolidation, but the number of different sizes of particle primitives is reduced to sixteen

so that the4x4 footprint can be used. This restriction can be lifted with the implementa-

tion of a variable size footprint, as described in Section 6.1. Note that some bin values

are zero where there are no particles of that particular grain size present in the volume of

interest. In some datasets, the extreme differences in the numbers of particles in some bins

required that alog10 scale option be available so that these magnitude differences could be

represented.

Table 3.2 Oceanside Dataset Grain Size Distribution.

Grain Size (mm) Φ Category
0.002363 8.725165 clay - mix w a little silt
0.003460 8.175012 clay - mix w a little silt
0.005066 7.624937 silt - very fine
0.007417 7.074949 silt - very fine
0.01086 6.524832 silt - fine
0.01590 5.974829 silt - medium
0.02328 5.424765 silt - medium
0.03408 4.874931 silt - coarse
0.04989 4.325105 silt - coarse
0.07305 3.774972 sand - very fine
0.1069 3.225666 sand - very fine
0.1566 2.674844 sand - fine
0.2293 2.124692 sand - fine
0.3356 1.575185 sand - medium
0.4914 1.025030 sand - medium
0.7195 0.4749334 sand - coarse
1.053 -0.07450542 sand - very coarse
1.542 -0.6248027 sand - very coarse
2.258 -1.175045 gravel - granule
3.306 -1.725087 gravel - granule
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Table 3.3 USDA Consolidated Grain Size Classification.

Grain Size (mm) Φ Category
< 0.0039 ( 1

256 ) > 8 clay - mix w a little silt
0.0078 ( 1

128 ) 7 silt - very fine
0.0156 (164 ) 6 silt - fine
0.031 (132 ) 5 silt - medium
0.0625 (116 ) 4 silt - coarse
0.125 (18 ) 3 sand - very fine
0.25 (14 ) 2 sand - fine
0.5 (12 ) 1 sand - medium
1 0 sand - coarse
2 -1 sand - very coarse
4 -2 gravel - granule
32 -5 gravel - pebble
256 -8 gravel - cobble
> 256 < -8 gravel - boulder

The number of pixels in the4x4 particle primitive are colored to show the relative

sizing of particles. The smallest grain size is represented by one pixel in the particle

primitive, and one pixel more is added for each larger grain size bin. For the case of the

USDA consolidated bin breakdown for the Oceanside dataset, Table 3.5 indicates the range

in number of pixels used in the particle primitive to represent each bin and sedimentation

category. Figure 3.6 illustrates the sequence of pixels colored in the particle primitive and

how it appears for the maximum pixels colored in each category. For the sedimentation

application where theΦ scale is based onlog2, each pixel increase in particle primitive

size corresponds to roughly a grain size that is two times larger than the previous bin.

Several different parameters were assigned to the pixel opacity (α), including SSC

concentration, but an effective scalar turned out to be grain size. Larger grain sizes were
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Table 3.4 Oceanside Dataset Example Calculations.

Actual Actual Consolidated Consolidated
Bin Particles Primitives Particles Primitives

0 0 0 7.57721× 1013 196,885
1 7.57721× 1013 196,885 1.11551× 1014 289,876
2 6.39223× 1013 166,108 3.13282× 1013 81,392
3 4.76288× 1013 123,768 2.89912× 1013 75,332
4 3.13282× 1013 81,392 1.00614× 1013 26,171
5 1.85719× 1013 48,257 3.37459× 1012 8,771
6 1.04192× 1013 27,075 2.24318× 1011 524
7 6.07447× 1012 15,791 2.78858× 1009 0
8 3.98691× 1012 10,380 2.52616× 1007 0
9 2.27527× 1012 5,905 0 0

10 1.09932× 1012 2,866 0 0
11 2.04652× 1011 524 0 0
12 1.96661× 1010 0 0 0
13 2.49810× 1009 0 0 0
14 2.90478× 1008 0
15 2.52616× 1007 0
16 0 0
17 0 0
18 0 0
19 0 0

Totals 2.61306× 1014 678,951 2.61306× 1014 678,951
Particles Per Particle Primitive in Volume:384,867,000
Total Available Particle Primitives in Volume:678,951
Percent Used of1,622,020 Maximum Particle Primitives:41.9%

Table 3.5 Bin Categories With USDA Pixel and Color Assignments.

Bins / Num Pixels Soil Type Color
1 Clay Green

2-5 Silt Red
6-10 Sand Cyan
11-14 Gravel Magenta
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Figure 3.6 Particle Primitive for Each USDA Sedimentation Category.

indicated by higher opacity values within a set range between 0.3 and 1.0 (although this

range was changeable)4. Using this criteria tended to emphasize the fewer larger diameter

particle primitives among many smaller ones.

Figure 3.7 shows the results of these enhancements for a single texture slice with a

slice resolution of32x32 for a cell at the hill location of the Oceanside dataset. Here

bin differences are indicated by particle size and color. Large numbers of clay particles

are shown by one pixel green particle primitives, as well as several sizes of silt particles

(red), and very few larger sand particles (cyan). The twelve layer volume visualization

described in Section 1.1, and shown in Figure 1.5, shows the benefits of the SCT algorithm

in the CAVE-like VE. Consider the point detail profile of the hill location from Figure 1.3

4α is typically represented in floating point as a value between 0 and 1, where 0 is totally transparent and
1 is totally opaque
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where the leftmost column depicting the clay bin category shows a very low value of

dark blue on thelog10 scale. This hardly seems like a significant sediment concentration

amount, but in terms of suspended particles, Figure 1.5 clearly shows numerous green

clay particles in the hill region. This is an example where the SCT method quickly shows

the difference between a grid location where many smaller particles result in very low

sediment concentration (hill), and one where fewer larger particles make up a much larger

sediment concentration (hole). This is contrary to what might be interpreted from the

detail profiles (see Figure 1.3). This is due to the differences in the grain sizes (diameters

of an assumed spherical particle) between bins, and the part it plays in the mass per volume

computation for sediment concentration (kg/m3) [68, 70].

Figure 3.7 Single Cell Texture Generated by the SCT Algorithm.
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CHAPTER IV

USER STUDY

The main purpose behind this study has been to quantitatively measure the effective-

ness of the SCT technique as a browsing method. A good browsing method will allow the

viewer to get an amount of basic information in a short time (“at a glance” type informa-

tion). Using perceptual concepts from Healey [20, 22] and Ware [71], a visual browsing

technique can be developed that enables the user to perform:

1. Feature Detection: whether information is present, and

2. Feature Identification: whether some feature stands out that should be investigated.

The user study experiment described in this chapter tests both criteria. Section 4.1 on

methodology describes all aspects involved with designing and setting up the experiment.

Section 4.2 describes the statistical results and analysis.

4.1 Methodology

This section describes how the user study was designed, the data acquisition process,

the physical aspects of the test environment, and the statistical methods used.

41
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4.1.1 Design

The user study was conceived around several goals. It needed to be general enough

to provide some external validity that the SCT algorithm could be applied as a browsing

method. It also needed to be constrained enough such that a subject could complete the

experiment in under an hour. In order to have enough subjects participate and guarantee

unbiased results, the study did not include sedimentation experts or require visualization

experts. To assess the effectiveness of the SCT method, it was compared with a state-of-

the-art method with similar characteristics. This was accomplished by conducting pilot

studies to determine the best comparative technique for the CAVE-like VE. Since the SCT

method does not use color to show magnitude, but only to show categories, the comparative

method was implemented using color the same way. The comparative method was required

to be 2D within a layer, such that multiple layers could potentially be rendered to represent

a volume.

Concepts from Taylor [60] on the characteristics of state-of-the-art information visual-

ization techniques were used as a starting point for the comparative method implementa-

tion. The data acquisition process and physical conditions of the experiment were derived

from a study on reaction times to name common objects by Watson [74], and a recent VE

user study design outlined in Ziegeler [80]. From the pilot study, five parameters were de-

termined to greatly affect how both techniques were perceived in the VE. These parameters

were:

• Field-of-view,
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• Vertical distance above surface,

• XY area,

• Number of layers, and

• Z scale.

The initial comparative method was heavily influenced by the “Oriented Sliver Tex-

tures” technique presented in Weigle [76], and possessing the advanced perceptual char-

acteristics discussed in Taylor [60]. Weigle’s 2D method uses orientation of sparse fields

of thin lines to differentiate between scalar fields and luminance intensity to show magni-

tude. According to Weigle, up to 15 separate orientations can be perceived, leading one to

believe that perhaps 15 scalar fields can be visualized at once. In practice Weigle’s method

was not effective in the VE, even with the incorporation of numerous options to randomize

how the orientations and placements occurred. Adding hue to help differentiate the scalar

fields created more difficulties due to differences in perceived intensity of hues [72, 79]

(see Figure 4.1). The thinness of the slivers also made 3D interpretation difficult in the

lower luminance VE environment and did not convey the size characteristic of the scalar

fields well.

From these results, an ordered wedge glyph was implemented where the area of each

wedge shape was related to the grain size characteristic of the scalar field, as shown in

Figure 2.1. The ordering of the wedges improved interpretation of the information and

grayscale intensity could then be used to convey scalar field magnitude. Colored bands

were placed around the outside of the glyph to provide the same general sediment category
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Figure 4.1 Oriented Sliver Textures in the VE.

information as the SCT method. The wedges and bands were separated by thin black areas

to reduce proximity contrast effects [71]. Local visualization experts viewed the final

glyph shape in the VE and considered it a viable state-of-the-art method incorporating

perceptual characteristics as outlined in the research. The overall technique was aptly

namedWedges, and an example of the implemented method is shown in Figure 4.2. The

results of the SCT algorithm for the same scene are shown in Figure 4.3. A comparison

of how the SCT and Wedges methods convey the sediment concentration information is

summarized in Table 4.1.

Other problems were uncovered during consultations with local visualization experts

while viewing various configurations in the VE. The Wedges method was not effective

when multiple layers were rendered to show volumes, even with transparency applied (see

Figure 4.4). Additionally, scenes with changing field-of-view, vertical distance, number of
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Figure 4.2 Top-down View of Typical Wedges Scene in Practice.

Figure 4.3 Top-down View of Typical SCT Scene in Practice.
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Table 4.1 Method Characteristics Comparison.

Per Grid Location SCT Wedges
Glyph for Each Bin Multiple PPs* Individual Wedge
Relative Grain size of Each Bin Number of Pixels in PP Area Size of Wedge
Magnitude of Each Bin Number of PPs Grayscale Intensity of Wedge
Category of Sediment Color of PPs Color of Outer Bands
*Particle Primitive

layers, andz scale were considered too difficult for novices to properly evaluate, so these

parameters were held constant for the final experiment.

4.1.2 Hypotheses

The general research question is to see if the SCT method has certain characteristics

that could make it a useful browsing technique. A good browsing method will allow the

viewer to get an amount of basic information in a short time while doing feature detection

and feature identification. This is tested by comparing the SCT method against the Wedges

method over increasing sizexy areas (regions) of datasets. The amount of time it takes for

a person to complete tasks to accomplish these goals can be measured and compared for

the two methods.

This is expressed in the form of two formal (paired) hypotheses:

HT0: There is no significant difference in the amount of time it takes to complete a

browsing task between the two methods over different size areas.

HTA: It takes significantly less time to complete a browsing task using the SCT method

vs. using the Wedges method over different size areas.



www.manaraa.com

47

Figure 4.4 Early Wedges Showing Ineffective Use of Transparency.

HC0: There is no significant difference in the correctness of the result during the

completion of a browsing task between the two methods over different size areas.

HCA: There is a significant difference in the correctness of the result during the com-

pletion of a browsing task between the two methods over different size areas.

These hypotheses can be written algebraically as:

HT0 : Ts = Tw, (4.1)

HTA : Ts < Tw, (4.2)

and

HC0 : Cs = Cw, (4.3)

HCA : Cs 6= Cw, (4.4)
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whereTs andTw represent the times using SCT and Wedges, respectively, andCs and

Cw represent the correctness.

The hypotheses were tested using a powerful statistical package from SPSS, Inc.,

called SPSS1. In the SPSS Analysis of Variance (ANOVA) procedure, the F-test is used

to test for differences between groups, and then comparison T-type tests verify in which

direction the differences exist and at which levels. Since there are three factors in this

experiment, ANOVA performs the F-test for differences between each of the factors, and

their combinations. For this analysis, the tests were run forMethod, Area, andColor,

as well as the interactions ofMethod ∗ Area, Method ∗ Color, Area ∗ Color, and

Method ∗Area ∗Color. When there are multiple dependent variables involved (as in this

case withTime andCorrect), then a multivariate version of ANOVA, called MANOVA,

is used. The advantage of using MANOVA is that the procedure tests for every condition

at once, so that combination effects are more completely evaluated and the combined error

is reduced.

4.1.3 Operationalization of Variables

The test cases were developed for levels of the four independent variables:

• Method: SCT, Wedges.

• Area: Small, Medium, and Large.

• Color (Task1 Only): Red, Green, Blue.

1Historically the product was known as the “Statistical Package for the Social Sciences,” but is now
simply referred to as SPSS.



www.manaraa.com

49

• Pattern (Task 2 Only): Pattern, No Pattern.

For each combination of independent variables, the dependent variables ofTime and

Correct were recorded. There were 18 Task 1 cases as shown in Table 4.2, and 12 Task 2

cases (see Table 4.3). Details about the specific datasets and grid locations are contained

in Appendix A.

4.1.4 Final User Study Experimental Configuration

The formal user study design was a2x3x3 experiment with two methods, three levels

of xy area, and three colors, as described in Section 4.1.3. A thorough design must often

test at least three levels of each factor to avoid missing important results at values other

than the extremes [7]. The other variables of field-of-view, vertical distance, number of

layers, andz scale were held constant. This was accomplished by rotating scenes that

would normally show up in a top-down view of the floor, up on the front wall such that

each scene would take up the same amount of area on the screen. Only one layer was

rendered at a flatz scale for each scene. The design was considered to be a repeated

measure within-subject, completely randomized design. This means that all subjects did

all parts of the experiment (so there were repeated measurements of the same subject),

and the ordering of which method, task, and scene was randomly set at the start of the

experiment. There were 50 subjects total and two tasks selected:

• Task 1: Find the single color cell.

• Task 2: Determine whether a checkerboard pattern exists.
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Table 4.2 Task 1 Cases.

Case
Number Sequence Method Area Color

0 000 SCT Small Red
1 001 SCT Small Green
2 002 SCT Small Blue
3 010 SCT Medium Red
4 011 SCT Medium Green
5 012 SCT Medium Blue
6 020 SCT Large Red
7 021 SCT Large Green
8 022 SCT Large Blue
9 100 Wedges Small Red
10 101 Wedges Small Green
11 102 Wedges Small Blue
12 110 Wedges Medium Red
13 111 Wedges Medium Green
14 112 Wedges Medium Blue
15 120 Wedges Large Red
16 121 Wedges Large Green
17 122 Wedges Large Blue

Table 4.3 Task 2 Cases.

Case
Number Sequence Method Pattern Area

0 000 SCT False Small
1 001 SCT False Medium
2 002 SCT False Large
3 010 SCT True Small
4 011 SCT True Medium
5 012 SCT True Large
6 100 Wedges False Small
7 101 Wedges False Medium
8 102 Wedges False Large
9 110 Wedges True Small
10 111 Wedges True Medium
11 112 Wedges True Large
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Each scene viewed in the VE represents one combination of the independent variables

and is termed atreatmentor conditionof the experiment.

Once the tasks and parameters were chosen, time steps from the available datasets were

viewed for scenes fitting the constraints. Although the scenes could have been artificially

generated, the results from a study using scenes from sedimentation datasets better sup-

ports the external validity required to apply conclusions to real world usage. Scenes were

taken from the seven datasets described in Section 3.1 and Appendix A.

The time steps were preprocessed to find minimums and maximums in the multiple

scalar fields representing sediment concentration, then those time steps were viewed using

both the SCT and Wedges methods. For Task 1, small to largexy areas were chosen

where only one cell contained the desired color. The location of the cell within the scene

was also varied such that subjects searched all four quadrants of the front wall display.

For Task 2, small to largexy areas were chosen such that either a significant portion of

the scene contained the checkerboard pattern or no pattern was discernable. The pattern

was only present in datasets containing mostly silt and sand, so the colors were limited to

red and blue. Since the subject would see the same scene rendered by both the SCT and

Wedges methods, only regions with no recognizable geographical features were used with

data represented at all grid points. Examples demonstrating the effect of changingxy area

for the Wedges method and Task 1 are shown in Figure 4.5. A similar effect for the SCT

method and Task 2 is shown in Figure 4.6. An example of a no pattern effect for both the

SCT and Wedges methods is shown in Figure 4.7.
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Figure 4.5 Wedges Task 1 Effect of ChangingXY Area.

Figure 4.6 SCT Task 2 Effect of ChangingXY Area.

Figure 4.7 Task 2 No Pattern Example for Both Methods.
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A person participating in the user study would spend a total of 40 to 60 minutes fol-

lowing a structured series of steps that would provide breaks to minimize fatigue, ask

questions, and keep attention focused. These segments included:

1. Detailed background information about the visualizations they would be viewing,

2. Introductory training on the features of the VE,

3. Examples of each task with practice,

4. Training for each task,

5. The actual experiment for each task.

All subjects performed the first 3 segments in the same sequence. Segments 4 and 5

were randomized by method and task, and then randomized by scene such that each subject

received a different ordering of treatments. The subject sat in a comfortable chair in the

middle of the VE, and used the wand to indicate responses by pointing and clicking. The

response time taken to select with the wand was recorded. The location and orientation

of the wand was also recorded to determine the correctness of the response. Additionally,

video and audio of each subject was digitally recorded, in case there was any ambiguity in

the computer logs. This user study conformed to the Mississippi State University Institu-

tional Review Board (IRB) guidelines for the protection of human subjects as documented

in IRB docket number 02-308 [66].

4.1.5 Statistical Methods

For a randomized within-subjects experimental design, several observations (called re-

peated measures) are taken from the same subject. Parametric statistical methods such as
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ANOVA for a single dependent variable can be employed under the following assump-

tions [8, 41]:

1. Interval Data: The dependent variable is measured on an equal interval scale.

2. Independence: The groups of measurements taken for each treatment are indepen-
dent.

3. Normally Distributed Data: The measurements are sampled from a source popula-
tion with a reasonably normal distribution.

4. Homogeneity of Variance: The groups of measurements have reasonably equal vari-
ances.

The Independenceassumption is met since the major dependent variable measured is

Time, which is on an equal interval (linear) scale. As an example, Subject A performs

a task in 10 seconds, and Subject B performs the same task in 5 seconds. Subject A

takes twice as long as Subject B, and so the scale for measuring time is linear. Since the

same subject is measured for each treatment, theIndependenceassumption is satisfied by

randomizing the presentation of each treatment. Additionally, the measurements between

different participants are also independent. As long as the number of measurements in

each treatment are the same, then ANOVA is quite robust with respect to assumptions 3

and 4. In this study each treatment group contains the response to one question by all

subjects, making the size of each group constant. There are specific tests in SPSS to test

for bothHomogeneity of VarianceandNormally Distributed Data. The results of testing

these assumptions and the implications for the analysis are described in Section 4.2.

The accuracy of the subject’s response was also recorded and analyzed as the second

dependent variable. This was initially recorded as thex andy coordinates of the wand
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intersection with the front wall. These values were compared with recorded correct re-

sponses and a value of 0 for an incorrect answer or 1 for a correct answer was assigned

for the analysis. The resulting dichotomousCorrect variable was analyzed together with

the Time variable using an extension to ANOVA called Multiple Analysis of Variance,

or MANOVA. MANOVA contains all of the same tests as ANOVA where each dependent

variable is analyzed separately, in addition to statistics for testing combined effects.

The analysis for each task of the user study was performed in two stages. During the

first stage the “Explore” group of statistics in SPSS was used to get basic information

about the independent and dependent variables and test theNormally Distributed Data

assumption. Repeated measures ANOVA was then applied to test the matrix of hypotheses.

4.2 Results

Prior to analysis, the variablesTime andCorrect were examined through SPSS ex-

ploratory programs for accuracy of data recorded and fit between the distributions for the

18 test cases against the assumptions of multivariate analysis. Although no values were

missing, there were a few cases where multipleTime values were recorded. In almost all

cases, the first value was used since supporting log file comments indicated that the selec-

tion button on the wand was held down just long enough to be recorded twice.Correct is

a dichotomous variable with a poor split (roughly90% True to 10% False), so analysis

including correlations with other variables was limited. Variables of this type are often still
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used in the analysis [8, 59], soCorrect was retained. In order to meet the requirement for

normal distributions, the following actions were taken [59]:

• TheTime variable was logarithmically transformed.

• One subject with extremely long times was deleted in order to reduce it’s effect on
all of the distributions, leaving 49 subjects for analysis.

• LongTime outliers were adjusted to maximum values based on Tukey’s Hinges [59,
65], which effectively sets a time limit for each test case.

• For a few remaining cases, there were still too many time values at maximum times
for the distributions to be classified as normal. For these cases, extremes were set to
the original distribution average value. For Task 1: three extremes were set for Case
13. For Task 2: two extremes were set for Case 1, and seven for Case 5.

These actions resulted in treatments with equal numbers of responses andTime data

distributions that met theNormally Distributed Dataassumption.

For repeated measures designs, theHomogeneity of Varianceassumption is often vi-

olated wheneverTime is a within-subjects variable [59]. This was also the case for this

study, but the SPSS significance tests produce output that is adjusted for violations of the

Homogeneity of Varianceassumption. Additionally, a conservative adjustment for uni-

variate pairwise comparisons was made to control the Type I pooled error rate2, thereby

reducing the probability of falsely rejecting the null hypothesisHT0. Interpretation of the

SPSS output was done using conservative significance test results. Although this approach

tends to reduce the statistical power, which increases the probability of a Type II error3,

2A Type I error means falsely rejecting the null hypothesis, or finding a difference that does not exist. At
a 0.05 level of significance, the probability of a Type I error is5%. The pooled error rate is the combined
error from all of the tests.

3A Type II error means rejecting an effect that actually exists, or finding no difference when one exists.
Statistical power measures the probability of a Type II error.
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the observed power for these results was the same as for less conservative tests, except as

specifically noted in the analyses described in Sections 4.2.1 and 4.2.2.

The significance level used to construct confidence intervals and compute observed

power can be changed in the SPSS Repeated Measures Option dialog. Separate analyses

were run for values at both 0.01 and 0.05 levels of significance. The effects resulting from

the pairwise mean difference comparisons were all significant at the 0.01 level. Except

where noted in the detailed analysis for each task, the observed statistical power for all

significant effects was still above 0.9. Values of power above 0.8 are considered adequate

for research [10], although Field recommends a value above 0.9 [8].

The Correct variable was set to a value of 0 for incorrect or 1 for correct based on

whether the subject chose the correct colored cell for Task 1, or the front or side walls to

registerTrue or False correctly for Task 2. For Task 2 the assignment was easily done,

since whether the front or side walls were selected is straightforward, and the assignment

was recorded directly in the log files. Each subject response was compared to the correct

True or False answer to assign theCorrect value. For Task1, the assignment was more

difficult, since comparisons had to be made to determine if the subject selected the correct

region on the front wall of the VE. To assign the value, the subject’s wand vector intersec-

tion with the wall was compared to a distribution of correct values previously registered.

This control distribution was gathered when the author selected the center point, corners,

and sides of the correct region for each test case condition. Additionally, points were

gathered from a left-handed and right-handed wand configuration, to account for different
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directions and orientations. This resulted in a distribution of twenty correct responses for

each condition. For each subject response, the intersection coordinates of the wand vec-

tor with the front wall were checked to see if they were within 1.5 times the range of the

control distribution [59, 65]. If they were, then a 1 or correct value was assigned. Other-

wise a 0 or incorrect value was assigned. The expanded 1.5 times range was included to

account for slight differences in seating and wand positioning between subjects. To verify

the reasonableness of this approach, the number of incorrect responses for each test case

condition was compared with visual analysis of scatter plots of the subject responses for

each condition. The number of subject responses outside the main region of majority re-

sponses was consistent with the number of incorrect responses counted for each condition.

For details on the assignment of theCorrect variable, see Appendix C. For details about

the process of cleaning up data for statistical analysis and the process undertaken here, see

Chapter 4 in Tabachnick [59], Garson [10], and Appendix B.

For each task a combined MANOVA analysis was performed that looks for significant

differences among the treatments for both dependent variableslog10(Time) andCorrect.

Multivariate results are reported for each main effect and all combinations. For results

that are significant, separate univariate ANOVA results for each effect and combination

are interpreted to see where the differences lie. Although all ANOVAs were conducted

on the data with 49 subjects and outliers trimmed, the graphs show the originalTime and

Correct data with all 50 subjects4. As a validation check, the complete MANOVA analysis

4This approach is taken in practice and facilitates interpretation of the results.
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was also run on the original data and similar significant results were obtained, but since the

Normally Distributed Dataassumption was not met, the reportedF values are considered

inaccurate and the overall power is less. Therefore the results of the significance tests

are reported based on results from thelog10(Time) trimmed data as output by SPSS and

contained in Appendix E. This combined approach provides a better overall understanding

of the data.

4.2.1 Task 1 Analysis

This section presents the results from testing the hypothesesHT0, HTA, HC0, and

HCA, using SPSS MANOVA for repeated measures samples taken during the Task 1 por-

tion of the experiment. MANOVA results are discussed for hypothesis testing using the

Time dependent variable at the 0.01 and 0.05 significance levels. Results for the depen-

dent variableCorrect are also discussed.

Results of the MANOVA showed significant multivariate results for the effects of

Method, Area, Color, and the combinations of all effects exceptMethod ∗ Color. For

this study, the effects ofMethod, Area, andMethod ∗Area are of particular interest and

are shown in Table 4.4 as a combined multivariate effect, as well as the separate univariate

effects onTime andCorrect. Results are considered to be highly significant when theF

value is greater than2, and the probabilityp is less than0.05 [8]. The “Combined” column

of Table 4.4 shows that the effects ofMethod, Area, andMethod ∗ Area were highly

significant for the combination ofTime andCorrect together.
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Table 4.4 Task 1 Multivariate and Univariate Significance Test Results.

Effect Combined p < Time p < Correct p <
Method F (2, 47) = 161.20 0.001 F (1, 48) = 315.79 0.001 Not Significant NA
Area F (4, 192) = 37.64 0.001 F (1.75, 83.95) = 332.51 0.001 F (1.49, 71.56) = 9.68 0.01
Method ∗Area F (4, 192) = 37.64 0.001 F (1.92, 92.04) = 33.57 0.001 Not Significant NA

Table 4.4 shows a significant effect ofMethod onTime, and this relationship is graph-

ically presented in Figure 4.8. The average time for the SCT method was 5.3 seconds,

while the average time for the Wedges method was 10.8 seconds, indicating that subjects

completed the task using the SCT method on average 5.5 seconds faster. There was no

significant effect ofMethod onCorrect.

The significant multivariate effect ofArea shown in Table 4.4 is broken down into

the effects onTime andCorrect. As shown in Figure 4.9, the time increased with area

size from 4.5 seconds for small areas, to 11.5 seconds for large areas, and all pairwise

differences between area sizes are significant. As would also be expected, the accuracy

decreased with increasing area, but the analysis indicates that the effect is only significant

between small and large areas (see Figure 4.10).

The significant effect ofMethod ∗ Area on Time can be seen in Figure 4.11. The

length of time it took a subject to complete Task 1 using the Wedges method took increas-

ingly longer with larger area size. The average difference between the two methods was

only 1.3 seconds for small areas, but increased to 5.3 seconds for medium areas and 10.1
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Figure 4.8 Task 1Time vs. Method for 50 Subjects.

Figure 4.9 Task 1Time vs. Area for 50 Subjects.
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Figure 4.10 Task 1Time vs. Area for 50 Subjects.

seconds for large areas. There was no significant effect ofMethod ∗ Area on Correct,

presented in Table 4.4.

Therefore for Task 1, it is clear that the null hypothesisHT0 is rejected andHTA is

accepted. It took significantly less time for subjects to complete the task using the SCT

method than using the Wedges method. Additionally, the null hypothesisHC0 is accepted

andHCA is rejected. There was no significant difference in the correctness of the result

during the completion of a browsing task between the two methods over different size

areas. Differences in accuracy were attributable to changes inArea, notMethod.

Other significant results from the study of Task 1 are summarized in Appendix D, and

the detailed MANOVA SPSS results are available in Appendix E.
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Figure 4.11 Task 1Time vs. Area by Method for 50 Subjects.

4.2.2 Task 2 Analysis

The main difference between the analysis for Task 1 and Task 2 is that instead of a

Color factor, there was aPattern factor. The only pattern tested was a checkerboard

pattern, which only appeared in the data as a red and blue mix. ThePattern factor itself

only has two levels:None (or False) andCheckerboard (or True).

Results of the MANOVA showed significant multivariate results for the effects of

Method, Area, Pattern, and the combinations of all effects exceptMethod ∗ Pattern

andMethod∗Pattern∗Area. For this study, the effects ofMethod, Area, andMethod∗

Area are of particular interest and are shown in Table 4.5. The “Combined” column of

Table 4.5 shows that the effects ofMethod, Area, andMethod ∗ Area were highly sig-

nificant for the combination ofTime andCorrect together.
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Table 4.5 Task 2 Multivariate and Univariate Significance Test Results.

Effect Combined p < Time p < Correct p <
Method F (2, 47) = 153.67 0.001 F (1, 48) = 303.76 0.001 F (1, 48) = 18.15 0.001
Area F (4, 192) = 9.35 0.001 F (1.60, 76.86) = 10.19 0.001 F (1.51, 72.41) = 7.91 0.01
Method ∗Area F (4, 192) = 13.28 0.001 F (1.97, 94.84) = 34.03 0.001 Not Significant NA

Table 4.5 shows a significant effect ofMethod onTime, and this relationship is graph-

ically presented in Figure 4.12. The average time for the SCT method was 5.1 seconds,

while the average time for the Wedges method was 16.0 seconds, indicating that subjects

completed the task using the SCT method on average 10.9 seconds faster. Unlike Task 1,

there was also a significant effect ofMethod on Correct. As shown in Figure 4.13, the

average ratio ofCorrect was higher for subjects using the SCT method at 0.94, whereas

the average ratioCorrect was only 0.83 for subjects using the Wedges method.

The significant multivariate effect ofArea shown in Table 4.5 is broken down into

the effects onTime andCorrect. As shown in Figure 4.14, the time increased with area

size from 8.7 seconds for small areas, to 12.9 seconds for large areas. Small-Large and

Medium-Large pairwise differences in area size are significant. As in Task 1, the accuracy

decreased with increasing area, but only theArea pairwise difference of Small-Medium

is significant (see Figure 4.15).

There was also a significant effect ofMethod ∗ Area on Time, which can be seen

in Figure 4.16. The length of time it took a subject to complete Task 2 using the Wedges

method took increasingly longer with larger area size, ranging from 12.3 seconds for small
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Figure 4.12 Task 2Time vs. Method for 50 Subjects.

Figure 4.13 Task 2Correct vs. Method for 50 Subjects.
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Figure 4.14 Task 2Time vs. Area for 50 Subjects.

Figure 4.15 Task 2Time vs. Area for 50 Subjects.
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areas to 20.5 seconds for large areas. In contrast, subjects took on average about 5 seconds

using the SCT method, regardless of area size. This result indicates that the SCT method is

very good for quickly identifying the checkerboard pattern when browsing large datasets.

There was no significant effect ofMethod ∗ Area onCorrect, presented in Table 4.5.

Figure 4.16 Task 2Time vs. Area by Method for 50 Subjects.

Therefore for Task 2, it is clear that the null hypothesisHT0 is rejected, andHTA is

accepted. It took significantly less time for subjects to complete the task using the SCT

method than using the Wedges method. Additionally, the null hypothesisHC0 is also

rejected, andHCA is accepted. Subjects using the SCT method were significantly more

accurate than when using the Wedges method over different size areas. Differences in

accuracy were attributable to changes inMethod andArea.
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Other significant results from the study of Task 2 are summarized in Appendix D, and

the detailed MANOVA SPSS results are available in Appendix E.
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CHAPTER V

PERFORMANCE STUDY

As described in Chapter 3, the SCT consists of the implementation independent por-

tion that does the scaling and distribution, as well as the portion that uses texture mapping

to implement the algorithm. The portion that renders the particles could have been im-

plemented a number of ways. In practice, particles are often rendered as individual prim-

itives, such as OpenGL points, quadrilaterals, or triangles. Quadrilaterals and triangles

may themselves be texture-mapped to make them appear more like spheres, or to convey

additional information other than just color. In their simplest and fastest form, these indi-

vidual particle primitives are color-mapped with a single color (or flat-shaded), and sized

according to some other criteria, such as grain size. The 2D texture mapping SCT method

was developed because it was thought that for each grid location, rendering only eight

triangles with the particle primitives synthesized into the texture vs. rendering hundreds

or thousands of individual particle primitives would be faster. The results in this chapter

confirm the logic of this decision. A performance study was completed that compares the

SCT method with two other currently used methods for rendering particles: OpenGLR©

color-mapped points (Points) and flat-shaded, color-mapped quadrilaterals (Quads) [78].

69
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Detailed results show where the performance of the SCT method is superior. The system

was optimized for deployment in a four wall CAVE-like VE.

5.1 Design

Performance data are obtained using extensive built-in graphics statistics gathering fea-

tures provided by the OpenGL PerformerTM toolkit [6, 56]. This scene graph based soft-

ware toolkit is designed to help optimize applications and discover bottlenecks running

on SGIR© supported platforms. Initial computation times for each of the three methods

are recorded using the SGI high-resolutionsyssgi hardware clock with sub-microsecond

accuracy and accessible through the OpenGL Performer API1. Although the Points rep-

resentation is included in the performance comparisons, it is not suitable for actual im-

plementation in our application since the points are not all the same approximate distance

from the viewer. OpenGL points are rendered to a specific “point size” that always use the

same number of pixels on the display regardless of the proximity of the viewer, making

them change in size relative to surrounding geometry depending on the viewer location.

OpenGL points may be applicable in other situations where the particles are all viewed

from approximately the same distance.

The test configurations were taken from the 10/23/1995 08:18 time step of the Ocean-

side dataset and were chosen to investigate the limitations of the three algorithms in the

following scenarios:

1This is much more precise than the commonly used real-time clock that only has an accuracy of 1-20
milliseconds, depending on the hardware platform.
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1. Shallow Region A Larger Area (SRALA): A12x21 point shallow water region that
maximizes the amount of texture memory used and includes both dense and sparse
regions of particles. Fewer layers were rendered to lessen the effects of blending.
Methods which use primitives for individual particles would do less work in sparse
regions. Machine A was chosen for this purpose since it has the largest amount of
texture memory and the most advanced SGI graphics pipeline (see Table 5.1). This
region contains 252 grid locations perz direction layer, and tests were run from 1 to
8 layers. The slice resolution chosen was64x64.

2. Shallow Region B Dense Particles (SRBDP): A6x22 point shallow water region
containing dense concentrations of particles over the full 31 layers of the dataset
for 132 grid locations perz direction layer. The slice resolution of16x16 in this
configuration maximizes the number of glyphs and the blending of layers during
rendering. Since the application is designed for the VE, Machine B is the testbed
for this scenario. Machine B is directly connected to the VE, as shown in Table 5.1.
Data was collected for layers 1 through 8, then every fourth layer through 31.

3. Shallow Region B Changing Resolutions (SRBCR): The same shallow water region
on Machine B, but studying the effects of increasing slice resolution on rendering
for 3 layers. Data was collected for resolutions of16x16 through128x128.

Each test case was run 5 times and the times were averaged. Since OpenGL has the

requirement that the length and width of texture images must be a power of 2, the slice

resolutions were chosen accordingly [78]. For details on the Oceanside dataset and the test

configurations, see Appendix A.

Table 5.1 Machine Configurations for Benchmark Tests.

Machine A Machine B
Type Onyx 2 Onyx 2
Graphics Infinite Reality 3 Infinite Reality
Num Processors 4 8
RAM (GB) 4 4
Texure Memory (MB) 512 128
Usage High-end Desktop CAVE-like VE
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5.2 Results

The frame rate comparison in Figure 5.1 shows that the SCT algorithm executes at 66

frames per second (fps) for up to 5 layers of the shallow water region, then decreases to

33fps for layers 6 and 7. This occurs because logic in the runtime portion of the OpenGL

Performer API attempts to match the frame rate of the scene rendered to the video refresh

rate [6]. For Machine A SRALA, this rate is 66 Hz. Once the frame rate drops below 12

fps, the rate is not affected by the video refresh rate, and is based simply on the number

of times the scene can be rendered during a second.

Figure 5.1 Frame Rate vs. Number of Layers for Machine A SRALA.

As shown in Figure 5.1, the Quads algorithm rendered the first layer of the configura-

tion at just under 9fps, and the Points algorithm at around 7fps. Note that the Quads
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Figure 5.2 Frame Rate Speedup Ratio vs. Number of Layers for Machine A SRALA.

method is generally faster than Points since the Infinite Reality graphics pipeline is opti-

mized for triangles,2 and the pipeline must do extra work to draw each point to the point

size specified in the Points algorithm. In contrast to the SCT algorithm, neither the Quads

nor Points methods could produce acceptable frame rates for two or more layers.

The results can also be shown in terms of a frame rate speedup ratio of SCT vs. Quads

or Points, which can be computed in terms offpsSCT /fpsOther. In Figure 5.2, the frame

rate speedup ratio for SCT vs. Quads varies from 7 to just under 35, with higher speedups

occurring when the Quads method bogs down the graphics pipeline when trying to render

more layers. For SCT vs. Points, the frame rate speedup ratio varies from 10 to 44.

Another perspective can be seen in Figure 5.3 and Figure 5.4. This series of runs was

performed in the VE configuration on Machine B for the shallow water region SRBDP.

2A quadrilateral is internally split into 2 triangles.
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Figure 5.3 shows frame rate vs. number of layers for the SCT, Quads, and Points algo-

rithms for a low slice resolution of16x16. In this case, the frame rate for all methods is

considerably affected by the amount of blending required for the large number of glyphs

displayed in a vertical column. The Quads and Points algorithms can maintain a frame rate

above 10fps for up to 5 layers. At 8 layers, a frame rate of around 6fps is still navigable

in the VE, but difficult. The SCT algorithm starts as high as 48fps for 1 layer, stays above

10 fps for up to 10 layers, and 6fps for up to 16 layers. At a slice resolution of16x16,

each layer adds about 2 MB of texture memory, and Machine B has enough to view all 31

layers. The end result is that the SCT algorithm is still up to 2 times faster than Quads or

Points in cases where the texture memory is not filled to capacity, but where there may be

many glyphs to display (see Figure 5.4).

Figure 5.3 Frame Rate vs. Number of Layers for Machine B SRBDP.
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Figure 5.4 Frame Rate Speedup vs. Number of Layers for Machine B SRBDP.

Figure 5.5 shows the same VE shallow water region configuration SRBCR for 3 layers

at differing slice resolutions of16x16 through128x128. The Quads and Points algorithms

can maintain a frame rate of 16fps at16x16, but only 4 to 5fps at32x32. In contrast, the

SCT algorithm can maintain a frame rate of 24fps up to a resolution of64x64. In other

words, the SCT algorithm can display 4 to 16 times the number of particles at a faster

frame rate than the other two algorithms (for this particular case). In cases where there

are very few particles in a particular bin, the SCT algorithm is more likely to be able to

represent those particles with a higher resolution than is possible with the other algorithms.

The numbers of glyphs computed for each bin at each resolution for this configuration are

shown in Table 5.23. Note that bin 7 is not represented at the16x16 resolution, but is

3For this particular dataset, the consolidation scheme resulted in values for only seven of the bins. Other
datasets could have values in all of the bins, representing more of the larger size particles.
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represented at32x32 and higher. This indicates that with a higher slice resolution, the

SCT algorithm can display values in a greater range than the Quads or Points methods

at an acceptable frame rate. This capability allows more detail information to be shown

because of the larger pool of particles that can be displayed at one time, and improves with

increasing slice resolution.

Figure 5.5 Frame Rate vs. Slice Resolution for Machine B SRBCR.

It is useful to note that frame rate comparisons do not tell the whole story. Although

the SCT algorithm can achieve a higher frame rate than either Points or Quads, it does

so at the expense of more memory and startup processing time to synthesize the texture.

Figure 5.6 shows the startup times for execution of all three algorithms. The startup time is

defined to be the amount of time it takes for the application to complete the geometry that

will be rendered for each visualization method. For the SCT method this includes the time
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Table 5.2 Number of Actual Consolidated Glyphs Used in Volume for Machine B SRBCR.

Bin 16x16 32x32 64x64 128x128
1 12,302 49,212 196,885 787,618
2 18,088 72,463 289,876 1,159,530
3 5,100 20,345 81,392 325,642
4 4,713 18,840 75,332 301,350
5 1,663 6,522 26,171 104,574
6 404 2,110 8,771 35,073
7 0 73 524 2,342

Total 42,270 169,565 678,951 2,716,130
PPG 6,181,820,000 1,541,040,000 384,867,000 96,205,100

to synthesize the textures, as well as the time to complete the triangle fan geometry for all

of the requested grid point locations. For the Points and Quads methods, it is the amount

of time it takes to complete the color-mapped geometry primitives for all of the requested

grid point locations. The time required per layer varies linearly with all three methods,

although the slope for the SCT algorithm is much steeper (6.20 sec/layer for SCT, 0.67

sec/layer for Quads, and 0.53 sec/layer for Points). This slope can be converted to a general

slope of seconds required per megabyte of memory: SCT requires 0.10 sec/MB, Quads

requires 0.06 sec/MB, and Points requires 0.18 sec/MB. This may seem counterintuitive,

but in reality all pixels in the SCT texture must be assigned values, even if they do not

represent actual glyphs for particles (in which case they would be transparent). The Quads

and Points algorithms only use memory for the actual glyphs rendered, whereas the SCT

algorithm uses much more memory to synthesize and store the textures (see Figure 5.7).

The fact that the Quads algorithm takes less time per megabyte than the Points is due to the
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similar amount of time it takes for both methods to locate the glyphs, with only slightly

more work required to place four closely spaced points for a quadrilateral than a single

point. Therefore, the Quads algorithm requires more memory, but the time per MB is less.

Figure 5.8 confirms the additional time required for the SCT algorithm: it is approximately

9.4 times slower than the Quads, and 11.7 times slower than the Points.

Figure 5.6 Startup Time vs. Number of Layers for Machine A SRALA.

One goal of this study was to determine the limitations of the SCT algorithm, and

Machine A was used for this purpose. There was only one case where the SCT algorithm

did not render the visualization, and this occurred when it could not complete the 8 layer

configuration because a process maximum shared memory limit of 500 MB was exceeded

(see Figure 5.1). This was due to an OpenGL Performer memory mapping problem during
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Figure 5.7 Total Memory vs. Number of Layers for Machine A SRALA.

Figure 5.8 Startup Time Speedup Ratio vs. Number of Layers for Machine A SRALA.
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the attempted allocation of about 500 MB of texture memory, as indicated in Figure 5.7

and documented in the release notes [58].

The SCT algorithm has been shown to take considerably more memory and startup

time than either of the other two methods. However, both aspects can be easily justified

as reasonable for the increased frame rate during scene rendering. Texture memory is

available in ever increasing amounts on new computers expressly for this purpose [53],

and massive amounts of main memory are utilized to reduce file access latencies. At the

point where the texture is computed, there is only color and transparency assigned based

on bin type for each glyph. This portion could easily be split by cell and partitioned among

several processors as described in Section 6.1.
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CHAPTER VI

CONCLUSIONS

This research makes several contributions in the visualization of multiple related scalar

fields as applied to sedimentation data. The new SCT algorithm was developed that pro-

vides an excellent indication of “how much” sediment concentration is present within a

cell, based on the number of particles of each grain size present. The SCT method com-

plements the point detail view that directly shows SSC values by grain size on alog10 color

scale. This gives the viewer a better indication for the types of sediment present and the

amounts that may affect visibility.

The SCT method has certain characteristics that could be applied for visual feature

detection and identification while browsing sedimentation datasets. This allows the viewer

to quickly get relative amounts of basic information within a short time. To quantitatively

measure the SCT method for browsing, a user study was performed to compare it with

the new glyph-based Wedges visualization method that also incorporates state-of-the-art

perceptual characteristics.

This is expressed in the form of two formal (paired) hypotheses:

HT0: There is no significant difference in the amount of time it takes to complete a

browsing task between the two methods over different size areas.
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HTA: It takes significantly less time to complete a browsing task using the SCT method

vs. using the Wedges method over different size areas.

HC0: There is no significant difference in the correctness of the result during the

completion of a browsing task between the two methods over different size areas.

HCA: There is a significant difference in the correctness of the result during the com-

pletion of a browsing task between the two methods over different size areas.

Data was gathered for 50 subjects performing two browsing tasks. In Task 1, the

subject was asked to find the single color cell as the feature detection requirement. In Task

2, the subject selected whether a checkerboard pattern was present, which satisfied the

requirement for feature identification.

Statistical analysis proved that the SCT method can be used for feature detection and

identification for several size areas (regions) from multiple sedimentation datasets. For

Task 1, the null hypothesisHT0 was rejected andHTA was accepted. It took significantly

less time for subjects to complete the task using the SCT method than using the Wedges

method. Additionally, the null hypothesisHC0 was accepted andHCA was rejected.

There was no significant difference in the correctness of the result during the completion

of a browsing task between the two methods over different size areas. Differences in ac-

curacy were attributable to changes inArea, notMethod. For Task 2, the null hypothesis

HT0 was rejected, andHTA was accepted. It took significantly less time for subjects to

complete the task using the SCT method than using the Wedges method. The null hypoth-

esisHC0 was also rejected, andHCA was accepted. Subjects using the SCT method were
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significantly more accurate than when using the Wedges method over different size areas.

Differences in accuracy were attributable to both changes inMethod andArea.

In another study the interactive performance of the SCT method was compared with

two glyph-based representations: OpenGL points and quadrilaterals. Performance statis-

tics showed the SCT method to have an increase in rendering speed of up to 44 times faster

than the other methods, depending on the volume to be displayed and the host system. For

a given frame rate, performance data showed that the SCT algorithm can display from 4

to 16 times the amount of information of the Quads or Points algorithms at a faster frame

rate in the VE.

The SCT method has been successfully applied to oceanographic sedimentation data

with up to sixteen scalar values per grid point. Scientists can use the SCT method to help

understand the physical processes involving sediment transport in complex coastal envi-

ronments. The method may be applied to other problem domains such as aerosol transport

and climate modeling. Future publications will describe its use in the visualization of dust

aerosol transport in global circulation models [11, 12, 13, 16, 61].

6.1 Future Work

Straightforward enhancements to the SCT algorithm include adding a variable size

glyph, parallelizing the texture synthesis portion of the algorithm, and extending the method

for time-varying data. Implementing a variable size glyph (such as3x3 or 4x5) is com-

plicated by the OpenGL optimization requirement that the length and width of a texture
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image be a power of 2 [78]. The leftover pixels computed during the texture synthesis

stage would need to be randomly distributed and made transparent. This would allow

better utilization of the pixels in the texture and more bins to be represented.

The parallelization of the texture synthesis portion of the SCT algorithm can be ac-

complished by partitioning the total cells to be textured among available processors on

the host and neighboring computers. For instance, the longest startup time for the SCT

algorithm was just under 45 seconds for 1,764 cells of the shallow water region. If the task

was simply split among 20 processors, then each one would compute the texture for ap-

proximately 88 cells. Even with the added overhead of communication and other process

loads, it is reasonable to expect that the overall startup time of the SCT algorithm could be

reduced to less than 5 seconds.

Extending the SCT algorithm for time-varying data requires that the bin information

for each glyph be saved along with the texture for the current time step, in order to compute

the differences in the texture for the next time step. The same texture memory can be used

and only glyph locations within the texture that must change are affected.

More future work involves performing user studies emphasizing other perceptual as-

pects of the SCT and Wedges methods.
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APPENDIX A

DATASET AND TEST CASE INFORMATION

The datasets used in this study were provided courtesy of Dr. Timothy Keen from the

Naval Research Lab at Stennis Space Center, Mississippi. The datasets represent a wide

range of weather conditions, locations, and sediment classes. The detailed descriptions are

given in Table 3.1. Geographic location information for each dataset is given in Figure A.1

through Figure A.6. Each map outlines the index information for the dataset along with

longitude and latitude coordinates.

Figure A.1 Louisiana Coast Hurricane Andrew Dataset Location.
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Figure A.2 Duck, North Carolina Dataset Location.
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Figure A.3 Great Bay, New Jersey Dataset Location.

Figure A.4 Mississippi Sound MSB Dataset Location.
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Figure A.5 Mississippi Sound Hurricane Camille Dataset Location.

Figure A.6 Oceanside, California Dataset Location.
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The following summary output was generated by the application for each dataset, and

includes dimensions and ranges for variables computed, especially pertaining to the SSC

variable.

-------------------------------------------------------------
Andrew Dataset Summary
-------------------------------------------------------------

NUMBER OF HEADERS: 83
NUMBER OF RECORDS: 635
IM: 355
JM: 262
LEVELS: 31
NUMBER OF SEDIMENT CLASSES: 20

GRAIN SIZE PHI CATEGORY
2.363000e-06 8.725165e+00 clay - mix w a little silt
3.460000e-06 8.175012e+00 clay - mix w a little silt
5.066000e-06 7.624937e+00 silt - very fine
7.417000e-06 7.074949e+00 silt - very fine
1.086000e-05 6.524832e+00 silt - fine
1.590000e-05 5.974829e+00 silt - medium
2.328000e-05 5.424765e+00 silt - medium
3.408000e-05 4.874931e+00 silt - coarse
4.989000e-05 4.325105e+00 silt - coarse
7.305000e-05 3.774972e+00 sand - very fine
1.069000e-04 3.225666e+00 sand - very fine
1.566000e-04 2.674844e+00 sand - fine
2.293000e-04 2.124692e+00 sand - fine
3.356000e-04 1.575185e+00 sand - medium
4.914000e-04 1.025030e+00 sand - medium
7.195000e-04 4.749334e-01 sand - coarse
1.053000e-03 -7.450542e-02 sand - very coarse
1.542000e-03 -6.248027e-01 sand - very coarse
2.258000e-03 -1.175045e+00 gravel - granule
3.306000e-03 -1.725087e+00 gravel - granule

DATA LONG DIMENSION: 74
DATA LAT DIMENSION: 51
DATA LONG MIN VALUE: -93.02272034
DATA LONG MAX VALUE: -89.37271881
DATA LAT MIN VALUE: 27.89660072
DATA LAT MAX VALUE: 30.39660072

format: min minidx mini minj mink mintstep max maxidx maxi maxj maxk maxtstep
sssp
AvgMinMaxSsc 0.000000e+00 2.244836e-01
AvgSscWtMethod 3
MinMaxAvgSsc 0.000000e+00 0 0 0 0 0 4.274262e+00 6289 73 33 1 0
MinMaxSscOverall 0.000000e+00 0 0 0 0 0 1.016401e+00 6215 73 32 1 0
MinSscOverallNonZero 5.007414e-09 54678 66 24 14 22
MinLog10SscOverallNonZero -8.300386e+00
MinMaxParticleContribOverall 0.000000e+00 0 0 0 0 0 1.310044e+10 6289 73 33 1 0
MinParticleContribOverallNonZero 2.000047e+00 36332 72 31 9 15
MinMaxParticleContribPerSlice 0.000000e+00 0 0 0 0 0 2.931145e+10 6289 73 33 1 0
MinParticleContribPerSliceNonZero 9.715678e-02 84099 35 14 22 24
MinSsc[grsz]

0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
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0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinSscNonZero[grsz]
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
5.009377e-09 92193 63 21 24 25
5.012344e-09 27507 53 14 7 21
5.013983e-09 28294 26 25 7 15
5.009114e-09 4919 35 15 1 23
5.007767e-09 81416 16 29 21 24
5.007649e-09 54428 38 21 14 22
5.007414e-09 54678 66 24 14 22
5.009166e-09 114304 48 14 30 21
5.007737e-09 69465 53 20 18 20
5.008014e-09 61468 48 14 16 17
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0

MaxSsc[grsz]
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
3.283576e-02 5301 47 20 1 24
2.293397e-01 6289 73 33 1 0
4.989535e-01 6289 73 33 1 0
8.442191e-01 6215 73 32 1 0
1.016401e+00 6215 73 32 1 0
9.107118e-01 6215 73 32 1 0
6.072913e-01 6215 73 32 1 0
2.443435e-01 6215 73 32 1 0
7.675255e-02 4936 52 15 1 21
2.882402e-02 4784 48 13 1 20
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0

MinParticleContrib[grsz]
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
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0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinParticleContribNonZero[grsz]
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
8.981481e+02 92193 63 21 24 25
2.863172e+02 27507 53 14 7 21
9.129346e+01 28294 26 25 7 15
2.907206e+01 4919 35 15 1 23
9.258462e+00 81416 16 29 21 24
2.954312e+00 54428 38 21 14 22
2.001437e+00 84043 53 13 22 15
2.000364e+00 24739 23 28 6 26
2.000047e+00 36332 72 31 9 15
2.000462e+00 54222 54 18 14 19
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0

MaxParticleContrib[grsz]
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
5.887234e+09 5301 47 20 1 24
1.310044e+10 6289 73 33 1 0
9.084830e+09 6289 73 33 1 0
4.899708e+09 6215 73 32 1 0
1.879144e+09 6215 73 32 1 0
5.372833e+08 6215 73 32 1 0
1.139665e+08 6215 73 32 1 0
1.460643e+07 6215 73 32 1 0
1.463465e+06 4936 52 15 1 21
1.750671e+05 4784 48 13 1 20
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0

FindMinMaxOverAllTimeSteps 1
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-------------------------------------------------------------
Duck10 Dataset Summary
-------------------------------------------------------------

NUMBER OF HEADERS: 73
NUMBER OF RECORDS: 325
IM: 36
JM: 30
LEVELS: 31
NUMBER OF SEDIMENT CLASSES: 10

GRAIN SIZE PHI CATEGORY
2.860000e-06 8.449769e+00 clay - mix w a little silt
6.130000e-06 7.349897e+00 silt - very fine
1.314000e-05 6.249891e+00 silt - fine
2.816000e-05 5.150209e+00 silt - medium
6.037000e-05 4.050024e+00 silt - coarse
1.294000e-04 2.950091e+00 sand - fine
2.774000e-04 1.849960e+00 sand - medium
5.946000e-04 7.500087e-01 sand - coarse
1.275000e-03 -3.504973e-01 sand - very coarse
2.732000e-03 -1.449958e+00 gravel - granule

DATA LONG DIMENSION: 36
DATA LAT DIMENSION: 30
DATA LONG MIN VALUE: -75.74790192
DATA LONG MAX VALUE: -75.73519897
DATA LAT MIN VALUE: 36.17800140
DATA LAT MAX VALUE: 36.19100189

format: min minidx mini minj mink mintstep max maxidx maxi maxj maxk maxtstep
sssp
AvgMinMaxSsc 0.000000e+00 1.259039e+03
AvgSscWtMethod 3
MinMaxAvgSsc 0.000000e+00 0 0 0 0 0 1.077421e+04 9803 35 37 1 2
MinMaxSscOverall 0.000000e+00 0 0 0 0 0 1.077150e+04 9803 35 37 1 2
MinSscOverallNonZero 2.650000e-09 69138 96 10 12 2
MinLog10SscOverallNonZero -8.576755e+00
MinMaxParticleContribOverall 0.000000e+00 0 0 0 0 0 9.435249e+14 6245 29 5 1 1
MinParticleContribOverallNonZero 2.000170e+00 19188 96 19 3 1
MinMaxParticleContribPerSlice 0.000000e+00 0 0 0 0 0 9.437270e+14 6245 29 5 1 1
MinParticleContribPerSliceNonZero 8.552703e+01 72074 35 37 12 2
MinSsc[grsz]

0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinSscNonZero[grsz]
1.487915e-05 180253 100 42 31 2
4.082900e-06 168757 37 41 29 2
5.300973e-06 83173 34 35 14 2
2.650000e-09 72074 35 37 12 2
2.650000e-09 69138 96 10 12 2
2.650000e-09 155177 110 20 27 2
2.650024e-06 157019 65 37 27 1
2.650133e-06 119389 64 4 21 1
2.650659e-06 13096 109 15 2 1
2.651213e-06 29697 60 12 5 0

MaxSsc[grsz]



www.manaraa.com

100

3.062640e+01 6245 29 5 1 1
1.187202e+02 6360 33 6 1 0
1.941673e+02 11191 91 49 1 0
1.077150e+04 9803 35 37 1 2
9.119921e+02 7927 46 20 1 2
3.172982e+02 8873 104 28 1 0
1.705867e+02 7454 17 16 1 1
5.466570e+01 8237 23 23 1 0
4.669865e+00 8265 51 23 1 2
1.616517e+01 8265 51 23 1 2

MinParticleContrib[grsz]
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinParticleContribNonZero[grsz]
4.583905e+08 180253 100 42 31 2
1.277447e+07 168757 37 41 29 2
1.683934e+06 83173 34 35 14 2
8.552703e+01 72074 35 37 12 2
8.680363e+00 69138 96 10 12 2
3.473439e+00 143855 110 20 25 2
8.947177e+01 157019 65 37 27 1
9.085493e+00 119389 64 4 21 1
2.000732e+00 68694 96 6 12 0
2.000170e+00 19188 96 19 3 1

MaxParticleContrib[grsz]
9.435249e+14 6245 29 5 1 1
3.714485e+14 6360 33 6 1 0
6.168017e+13 11191 91 49 1 0
3.476432e+14 9803 35 37 1 2
2.987329e+12 7927 46 20 1 2
1.055408e+11 8873 104 28 1 0
5.759454e+09 7454 17 16 1 1
1.874113e+08 8237 23 23 1 0
1.623788e+06 8265 51 23 1 2
5.713388e+05 8265 51 23 1 2

FindMinMaxOverAllTimeSteps 1

-------------------------------------------------------------
Duck20 Dataset Summary
-------------------------------------------------------------

NUMBER OF HEADERS: 83
NUMBER OF RECORDS: 635
IM: 36
JM: 30
LEVELS: 31
NUMBER OF SEDIMENT CLASSES: 20

GRAIN SIZE PHI CATEGORY
2.363000e-06 8.725165e+00 clay - mix w a little silt
3.460000e-06 8.175012e+00 clay - mix w a little silt
5.066000e-06 7.624937e+00 silt - very fine
7.417000e-06 7.074949e+00 silt - very fine
1.086000e-05 6.524832e+00 silt - fine
1.590000e-05 5.974829e+00 silt - medium
2.328000e-05 5.424765e+00 silt - medium
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3.408000e-05 4.874931e+00 silt - coarse
4.989000e-05 4.325105e+00 silt - coarse
7.305000e-05 3.774972e+00 sand - very fine
1.069000e-04 3.225666e+00 sand - very fine
1.566000e-04 2.674844e+00 sand - fine
2.293000e-04 2.124692e+00 sand - fine
3.356000e-04 1.575185e+00 sand - medium
4.914000e-04 1.025030e+00 sand - medium
7.195000e-04 4.749334e-01 sand - coarse
1.053000e-03 -7.450542e-02 sand - very coarse
1.542000e-03 -6.248027e-01 sand - very coarse
2.258000e-03 -1.175045e+00 gravel - granule
3.306000e-03 -1.725087e+00 gravel - granule

DATA LONG DIMENSION: 36
DATA LAT DIMENSION: 30
DATA LONG MIN VALUE: -75.74790192
DATA LONG MAX VALUE: -75.73519897
DATA LAT MIN VALUE: 36.17800140
DATA LAT MAX VALUE: 36.19100189

format: min minidx mini minj mink mintstep max maxidx maxi maxj maxk maxtstep
sssp
AvgMinMaxSsc 0.000000e+00 2.339696e+02
AvgSscWtMethod 3
MinMaxAvgSsc 0.000000e+00 0 0 0 0 0 1.674488e+03 2063 11 27 1 20
MinMaxSscOverall 0.000000e+00 0 0 0 0 0 1.352061e+03 2063 11 27 1 20
MinSscOverallNonZero 2.650071e-06 21670 34 1 20 13
MinLog10SscOverallNonZero -5.576743e+00
MinMaxParticleContribOverall 0.000000e+00 0 0 0 0 0 1.334817e+15 1194 6 3 1 22
MinParticleContribOverallNonZero 2.000286e+00 5457 21 1 5 11
MinMaxParticleContribPerSlice 0.000000e+00 0 0 0 0 0 1.615512e+15 1194 6 3 1 22
MinParticleContribPerSliceNonZero 5.019462e+02 17189 17 27 15 2
MinSsc[grsz]

0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinSscNonZero[grsz]
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
2.733983e-06 34285 13 22 31 0
2.650351e-06 3859 7 17 3 39
2.652212e-06 22728 12 1 21 38
2.650464e-06 24151 31 10 22 6
2.652699e-06 34123 31 17 31 32
2.650902e-06 7586 26 0 7 31
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2.650374e-06 6564 12 2 6 31
2.650202e-06 19092 12 20 17 14
2.650122e-06 24172 16 11 22 22
2.650071e-06 21670 34 1 20 13
2.650109e-06 15993 9 24 14 0
2.650300e-06 12482 26 16 11 9
2.650265e-06 7726 22 4 7 7
2.650164e-06 5737 13 9 5 5
2.657836e-06 7277 5 22 6 5
2.664881e-06 3316 4 2 3 14
1.000000e+10 0 0 0 0 0

MaxSsc[grsz]
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
7.557026e+02 1194 6 3 1 22
1.352061e+03 2063 11 27 1 20
3.765957e+02 1875 3 22 1 10
3.524167e+02 1977 33 24 1 21
6.680524e+02 1223 35 3 1 23
2.753588e+02 1977 33 24 1 21
1.957257e+02 1448 8 10 1 18
1.201626e+02 1304 8 6 1 15
5.879296e+01 1523 11 12 1 17
9.592771e+01 1593 9 14 1 17
2.621777e+01 1191 3 3 1 24
1.239271e+02 1230 6 4 1 27
2.781082e+02 1230 6 4 1 27
2.764426e-01 2128 4 29 1 8
5.898415e-02 2092 4 28 1 8
7.595533e-03 1084 4 0 1 16
0.000000e+00 1 1 0 0 0

MinParticleContrib[grsz]
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinParticleContribNonZero[grsz]
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
4.829104e+06 34285 13 22 31 0
1.491315e+06 3859 7 17 3 39
4.755240e+05 22728 12 1 21 38
1.514009e+05 24151 31 10 22 6
4.829974e+04 34123 31 17 31 32
1.538540e+04 7586 26 0 7 31
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4.900066e+03 6564 12 2 6 31
1.563512e+03 19092 12 20 17 14
4.973317e+02 24172 16 11 22 22
1.584167e+02 21670 34 1 20 13
5.053048e+01 15993 9 24 14 0
1.609700e+01 12482 26 16 11 9
5.128052e+00 7726 22 4 7 7
2.000286e+00 5457 21 1 5 11
2.004049e+00 5450 14 1 5 10
2.008665e+00 1132 16 1 1 10
1.000000e+10 0 0 0 0 0

MaxParticleContrib[grsz]
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
1.334817e+15 1194 6 3 1 22
7.607858e+14 2063 11 27 1 20
6.752111e+13 1875 3 22 1 10
2.013089e+13 1977 33 24 1 21
1.216374e+13 1223 35 3 1 23
1.598137e+12 1977 33 24 1 21
3.618617e+11 1448 8 10 1 18
7.089113e+10 1304 8 6 1 15
1.103330e+10 1523 11 12 1 17
5.734393e+09 1593 9 14 1 17
4.999025e+08 1191 3 3 1 24
7.526900e+08 1230 6 4 1 27
5.381173e+08 1230 6 4 1 27
1.706378e+05 2128 4 29 1 8
1.159412e+04 2092 4 28 1 8
4.754906e+02 1084 4 0 1 16
0.000000e+00 1 1 0 0 0

FindMinMaxOverAllTimeSteps 1
format: min minidx mini minj mink mintstep max maxidx maxi maxj maxk maxtstep
findoveralltstep
wd -1.287500e+01 35 35 0 0 0 1.000000e+00 33480 0 0 31 0 0

-------------------------------------------------------------
Great Bay Dataset Summary
-------------------------------------------------------------

NUMBER OF HEADERS: 83
NUMBER OF RECORDS: 635
IM: 177
JM: 198
LEVELS: 31
NUMBER OF SEDIMENT CLASSES: 20

GRAIN SIZE PHI CATEGORY
2.363000e-06 8.725165e+00 clay - mix w a little silt
3.460000e-06 8.175012e+00 clay - mix w a little silt
5.066000e-06 7.624937e+00 silt - very fine
7.417000e-06 7.074949e+00 silt - very fine
1.086000e-05 6.524832e+00 silt - fine
1.590000e-05 5.974829e+00 silt - medium
2.328000e-05 5.424765e+00 silt - medium
3.408000e-05 4.874931e+00 silt - coarse
4.989000e-05 4.325105e+00 silt - coarse
7.305000e-05 3.774972e+00 sand - very fine
1.069000e-04 3.225666e+00 sand - very fine
1.566000e-04 2.674844e+00 sand - fine
2.293000e-04 2.124692e+00 sand - fine
3.356000e-04 1.575185e+00 sand - medium
4.914000e-04 1.025030e+00 sand - medium
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7.195000e-04 4.749334e-01 sand - coarse
1.053000e-03 -7.450542e-02 sand - very coarse
1.542000e-03 -6.248027e-01 sand - very coarse
2.258000e-03 -1.175045e+00 gravel - granule
3.306000e-03 -1.725087e+00 gravel - granule

DATA LONG DIMENSION: 39
DATA LAT DIMENSION: 41
DATA LONG MIN VALUE: -74.31109619
DATA LONG MAX VALUE: -74.27310181
DATA LAT MIN VALUE: 39.53139877
DATA LAT MAX VALUE: 39.57139969

format: min minidx mini minj mink mintstep max maxidx maxi maxj maxk maxtstep
sssp
AvgMinMaxSsc 0.000000e+00 2.025934e+01
AvgSscWtMethod 3
MinMaxAvgSsc 0.000000e+00 0 0 0 0 0 2.916617e+02 2109 3 13 1 10
MinMaxSscOverall 0.000000e+00 0 0 0 0 0 2.916617e+02 2109 3 13 1 10
MinSscOverallNonZero 2.650088e-06 37290 6 13 23 21
MinLog10SscOverallNonZero -5.576740e+00
MinMaxParticleContribOverall 0.000000e+00 0 0 0 0 0 7.904907e+11 2037 9 11 1 27
MinParticleContribOverallNonZero 1.609714e+01 20880 15 2 13 1
MinMaxParticleContribPerSlice 0.000000e+00 0 0 0 0 0 7.904907e+11 2037 9 11 1 27
MinParticleContribPerSliceNonZero 4.978996e+02 31773 27 35 19 10
MinSsc[grsz]

0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinSscNonZero[grsz]
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
2.651768e-06 14111 32 33 8 8
2.651109e-06 23736 24 34 14 8
2.669529e-06 37825 34 26 23 5
2.653303e-06 49385 11 36 30 10
2.650143e-06 43304 14 3 27 0
2.650088e-06 37290 6 13 23 21
2.650303e-06 31786 1 36 19 1
2.650254e-06 42051 9 12 26 28
2.650114e-06 42195 36 15 26 8
2.650323e-06 20880 15 2 13 1
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
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1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0

MaxSsc[grsz]
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
4.408924e+00 2037 9 11 1 27
5.545751e+00 2484 27 22 1 26
1.435573e+01 1996 7 10 1 14
9.160265e+00 1736 20 3 1 28
2.035765e+01 2002 13 10 1 9
4.478554e+01 1785 30 4 1 22
2.916617e+02 2109 3 13 1 10
1.233119e+01 2223 0 16 1 21
2.394755e+00 2223 0 16 1 21
1.853465e-01 2563 28 24 1 8
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0

MinParticleContrib[grsz]
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinParticleContribNonZero[grsz]
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
4.754443e+05 14111 32 33 8 8
1.514378e+05 23736 24 34 14 8
4.860616e+04 37825 34 26 23 5
1.539933e+04 49385 11 36 30 10
4.899639e+03 43304 14 3 27 0
1.563445e+03 37290 6 13 23 21
4.973656e+02 31786 1 36 19 1
1.584276e+02 42051 9 12 26 28
5.053058e+01 42195 36 15 26 8
1.609714e+01 20880 15 2 13 1
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
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1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0

MaxParticleContrib[grsz]
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
7.904907e+11 2037 9 11 1 27
3.167867e+11 2484 27 22 1 26
2.613858e+11 1996 7 10 1 14
5.316466e+10 1736 20 3 1 28
3.763765e+10 2002 13 10 1 9
2.642167e+10 1785 30 4 1 22
5.473431e+10 2109 3 13 1 10
7.371370e+08 2223 0 16 1 21
4.566156e+07 2223 0 16 1 21
1.125730e+06 2563 28 24 1 8
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0

FindMinMaxOverAllTimeSteps 1

-------------------------------------------------------------
MSB Dataset Summary
-------------------------------------------------------------

NUMBER OF HEADERS: 78
NUMBER OF RECORDS: 480
IM: 182
JM: 139
LEVELS: 31
NUMBER OF SEDIMENT CLASSES: 15

GRAIN SIZE PHI CATEGORY
2.518000e-06 8.633506e+00 clay - mix w a little silt
4.187000e-06 7.899867e+00 silt - very fine
6.960000e-06 7.166697e+00 silt - very fine
1.157000e-05 6.433467e+00 silt - fine
1.924000e-05 5.699747e+00 silt - medium
3.198000e-05 4.966686e+00 silt - coarse
5.317000e-05 4.233244e+00 silt - coarse
8.839000e-05 3.499973e+00 sand - very fine
1.469000e-04 2.767094e+00 sand - fine
2.443000e-04 2.033274e+00 sand - fine
4.061000e-04 1.300093e+00 sand - medium
6.752000e-04 5.666132e-01 sand - coarse
1.122000e-03 -1.660727e-01 sand - very coarse
1.866000e-03 -8.999490e-01 sand - very coarse
3.102000e-03 -1.633199e+00 gravel - granule

DATA LONG DIMENSION: 40
DATA LAT DIMENSION: 51
DATA LONG MIN VALUE: -89.10350037
DATA LONG MAX VALUE: -88.71350098
DATA LAT MIN VALUE: 29.87459946
DATA LAT MAX VALUE: 30.37459946

format: min minidx mini minj mink mintstep max maxidx maxi maxj maxk maxtstep
sssp
AvgMinMaxSsc 0.000000e+00 4.608286e-04
AvgSscWtMethod 3
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MinMaxAvgSsc 0.000000e+00 0 0 0 0 0 6.071728e-03 2191 31 3 1 30
MinMaxSscOverall 0.000000e+00 0 0 0 0 0 2.755421e-03 2191 31 3 1 30
MinSscOverallNonZero 5.220599e-08 15828 28 38 7 30
MinLog10SscOverallNonZero -7.282279e+00
MinMaxParticleContribOverall 0.000000e+00 0 0 0 0 0 7.366708e+07 2194 34 3 1 31
MinParticleContribOverallNonZero 1.190312e+01 38832 32 1 19 28
MinMaxParticleContribPerSlice 0.000000e+00 0 0 0 0 0 9.238215e+07 2242 2 5 1 29
MinParticleContribPerSliceNonZero 1.190312e+01 38832 32 1 19 28
MinSsc[grsz]

0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinSscNonZero[grsz]
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
5.226741e-08 23542 22 27 11 30
5.221120e-08 55830 30 18 27 30
5.231188e-08 37431 31 17 18 29
5.220599e-08 15828 28 38 7 30
5.256037e-08 63270 30 0 31 26
5.235650e-08 38832 32 1 19 28
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0

MaxSsc[grsz]
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
1.583135e-04 2194 34 3 1 31
2.418346e-04 2074 34 0 1 30
6.046703e-04 2073 33 0 1 30
2.176035e-03 2191 31 3 1 30
2.755421e-03 2191 31 3 1 30
9.761535e-04 2511 31 11 1 30
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0

MinParticleContrib[grsz]
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
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0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinParticleContribNonZero[grsz]
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
2.432128e+04 23542 22 27 11 30
5.283284e+03 55830 30 18 27 30
1.152711e+03 37431 31 17 18 29
2.503087e+02 15828 28 38 7 30
5.485353e+01 63270 30 0 31 26
1.190312e+01 38832 32 1 19 28
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0

MaxParticleContrib[grsz]
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
7.366708e+07 2194 34 3 1 31
2.447139e+07 2074 34 0 1 30
1.332413e+07 2073 33 0 1 30
1.043330e+07 2191 31 3 1 30
2.875638e+06 2191 31 3 1 30
2.219260e+05 2511 31 11 1 30
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0

FindMinMaxOverAllTimeSteps 1

-------------------------------------------------------------
Mississippi Sound Dataset Summary
-------------------------------------------------------------

NUMBER OF HEADERS: 73
NUMBER OF RECORDS: 325
IM: 286
JM: 210
LEVELS: 31
NUMBER OF SEDIMENT CLASSES: 10

GRAIN SIZE PHI CATEGORY
2.860000e-06 8.449769e+00 clay - mix w a little silt
6.130000e-06 7.349897e+00 silt - very fine
1.314000e-05 6.249891e+00 silt - fine
2.816000e-05 5.150209e+00 silt - medium
6.037000e-05 4.050024e+00 silt - coarse
1.294000e-04 2.950091e+00 sand - fine
2.774000e-04 1.849960e+00 sand - medium
5.946000e-04 7.500087e-01 sand - coarse
1.275000e-03 -3.504973e-01 sand - very coarse
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2.732000e-03 -1.449958e+00 gravel - granule
DATA LONG DIMENSION: 111
DATA LAT DIMENSION: 51
DATA LONG MIN VALUE: -89.59923553
DATA LONG MAX VALUE: -88.71044159
DATA LAT MIN VALUE: 30.02396011
DATA LAT MAX VALUE: 30.42795944

format: min minidx mini minj mink mintstep max maxidx maxi maxj maxk maxtstep
sssp
AvgMinMaxSsc 0.000000e+00 1.259039e+03
AvgSscWtMethod 3
MinMaxAvgSsc 0.000000e+00 0 0 0 0 0 1.077421e+04 9803 35 37 1 2
MinMaxSscOverall 0.000000e+00 0 0 0 0 0 1.077150e+04 9803 35 37 1 2
MinSscOverallNonZero 2.650000e-09 69138 96 10 12 2
MinLog10SscOverallNonZero -8.576755e+00
MinMaxParticleContribOverall 0.000000e+00 0 0 0 0 0 9.435249e+14 6245 29 5 1 1
MinParticleContribOverallNonZero 2.000170e+00 19188 96 19 3 1
MinMaxParticleContribPerSlice 0.000000e+00 0 0 0 0 0 9.437270e+14 6245 29 5 1 1
MinParticleContribPerSliceNonZero 8.552703e+01 72074 35 37 12 2
MinSsc[grsz]

0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinSscNonZero[grsz]
1.487915e-05 180253 100 42 31 2
4.082900e-06 168757 37 41 29 2
5.300973e-06 83173 34 35 14 2
2.650000e-09 72074 35 37 12 2
2.650000e-09 69138 96 10 12 2
2.650000e-09 155177 110 20 27 2
2.650024e-06 157019 65 37 27 1
2.650133e-06 119389 64 4 21 1
2.650659e-06 13096 109 15 2 1
2.651213e-06 29697 60 12 5 0

MaxSsc[grsz]
3.062640e+01 6245 29 5 1 1
1.187202e+02 6360 33 6 1 0
1.941673e+02 11191 91 49 1 0
1.077150e+04 9803 35 37 1 2
9.119921e+02 7927 46 20 1 2
3.172982e+02 8873 104 28 1 0
1.705867e+02 7454 17 16 1 1
5.466570e+01 8237 23 23 1 0
4.669865e+00 8265 51 23 1 2
1.616517e+01 8265 51 23 1 2

MinParticleContrib[grsz]
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
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0.000000e+00 0 0 0 0 0
MinParticleContribNonZero[grsz]

4.583905e+08 180253 100 42 31 2
1.277447e+07 168757 37 41 29 2
1.683934e+06 83173 34 35 14 2
8.552703e+01 72074 35 37 12 2
8.680363e+00 69138 96 10 12 2
3.473439e+00 143855 110 20 25 2
8.947177e+01 157019 65 37 27 1
9.085493e+00 119389 64 4 21 1
2.000732e+00 68694 96 6 12 0
2.000170e+00 19188 96 19 3 1

MaxParticleContrib[grsz]
9.435249e+14 6245 29 5 1 1
3.714485e+14 6360 33 6 1 0
6.168017e+13 11191 91 49 1 0
3.476432e+14 9803 35 37 1 2
2.987329e+12 7927 46 20 1 2
1.055408e+11 8873 104 28 1 0
5.759454e+09 7454 17 16 1 1
1.874113e+08 8237 23 23 1 0
1.623788e+06 8265 51 23 1 2
5.713388e+05 8265 51 23 1 2

FindMinMaxOverAllTimeSteps 1

-------------------------------------------------------------
Oceanside Dataset Description With Variables (netCDF version)
-------------------------------------------------------------

NUMBER OF HEADERS = 64
NUMBER OF RECORDS = 46
IM = 36
JM = 30
LEVELS = 31
Z HEIGHT ABOVE BED (M):
0.1854E-02
0.2940E-02
0.4662E-02
0.7392E-02
0.1172E-01
0.1859E-01
0.2947E-01
0.4673E-01
0.7410E-01
0.1175E+00
0.1863E+00
0.2026E+00
0.2204E+00
0.2397E+00
0.2607E+00
0.2836E+00
0.3084E+00
0.3355E+00
0.3649E+00
0.3969E+00
0.4316E+00
0.4695E+00
0.5106E+00
0.5554E+00
0.6041E+00
0.6570E+00
0.7146E+00
0.7772E+00
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0.8453E+00
0.9194E+00
0.1000E+01
NUMBER OF SEDIMENT CLASSES = 1-20
SIZE CLASS MID POINTS (M): (will have up to 20 entries here)
0.8839E-04
VARIABLES:
LONGITUDE
LATITUDE
WD: WATER DEPTH
UB: E-W BOTTOM CURRENT
VB: N-S BOTTOM CURRENT
WO: WAVE ORBITAL
WC: WAVE CURRENT
KBC
KB
KBRP
KBST
USTARC
USTARCW
URUW
DW
RH: RIPPLE HEIGHT
RL: RIPPLE LENGTH
ISSC: INTEG. SUSPENDED SEDIMENT CONC. (KG/Mˆ2)
RSD: RESUSPENSION DEPTH (M)
ALD: ACTIVE LAYER DEPTH (M)
RWD: REWORKING DEPTH (M)
NBTL: NEAR-BED TRANSPORT LAYER (M)
SPECTRAL SUSPENDED SEDIMENT PROFILES (KG/Mˆ3)
CONCENTRATION (KG/Mˆ3): CLASS 1 LEVEL 1
through
CONCENTRATION (KG/Mˆ3): CLASS 1 LEVEL 31

-------------------------------------------------------------
Oceanside Dataset Summary
-------------------------------------------------------------

NUMBER OF HEADERS: 83
NUMBER OF RECORDS: 635
IM: 32
JM: 22
LEVELS: 31
NUMBER OF SEDIMENT CLASSES: 20

GRAIN SIZE PHI CATEGORY
2.363000e-06 8.725165e+00 clay - mix w a little silt
3.460000e-06 8.175012e+00 clay - mix w a little silt
5.066000e-06 7.624937e+00 silt - very fine
7.417000e-06 7.074949e+00 silt - very fine
1.086000e-05 6.524832e+00 silt - fine
1.590000e-05 5.974829e+00 silt - medium
2.328000e-05 5.424765e+00 silt - medium
3.408000e-05 4.874931e+00 silt - coarse
4.989000e-05 4.325105e+00 silt - coarse
7.305000e-05 3.774972e+00 sand - very fine
1.069000e-04 3.225666e+00 sand - very fine
1.566000e-04 2.674844e+00 sand - fine
2.293000e-04 2.124692e+00 sand - fine
3.356000e-04 1.575185e+00 sand - medium
4.914000e-04 1.025030e+00 sand - medium
7.195000e-04 4.749334e-01 sand - coarse
1.053000e-03 -7.450542e-02 sand - very coarse
1.542000e-03 -6.248027e-01 sand - very coarse
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2.258000e-03 -1.175045e+00 gravel - granule
3.306000e-03 -1.725087e+00 gravel - granule

DATA LONG DIMENSION: 32
DATA LAT DIMENSION: 22
DATA LONG MIN VALUE: -117.45400238
DATA LONG MAX VALUE: -117.39800262
DATA LAT MIN VALUE: 33.19250107
DATA LAT MAX VALUE: 33.23030090

format: min minidx mini minj mink mintstep max maxidx maxi maxj maxk maxtstep
sssp
AvgMinMaxSsc 0.000000e+00 2.068987e+00
AvgSscWtMethod 3
MinMaxAvgSsc 0.000000e+00 0 0 0 0 0 2.624555e+01 1303 23 18 1 8
MinMaxSscOverall 0.000000e+00 0 0 0 0 0 1.284085e+01 1302 22 18 1 8
MinSscOverallNonZero 2.650349e-06 15408 16 19 21 10
MinLog10SscOverallNonZero -5.576697e+00
MinMaxParticleContribOverall 0.000000e+00 0 0 0 0 0 1.529269e+12 797 29 2 1 8
MinParticleContribOverallNonZero 5.132346e+00 20123 27 12 28 10
MinMaxParticleContribPerSlice 0.000000e+00 0 0 0 0 0 5.210060e+12 797 29 2 1 8
MinParticleContribPerSliceNonZero 5.015185e+02 12231 7 8 17 0
MinSsc[grsz]

0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinSscNonZero[grsz]
3.063527e-03 22078 30 7 31 2
8.674594e-03 22078 30 7 31 2
2.139316e-02 22078 30 7 31 2
4.572879e-02 22078 30 7 31 2
8.332234e-02 22078 30 7 31 1
1.289164e-01 22078 30 7 31 2
1.504657e-01 22269 29 13 31 2
5.381555e-02 21923 3 3 31 6
2.658804e-06 4071 7 17 5 3
2.667195e-06 16427 11 7 23 6
2.652350e-06 22064 16 7 31 1
2.661026e-06 22436 4 19 31 4
2.650349e-06 15408 16 19 21 10
2.651683e-06 19644 28 19 27 0
2.659294e-06 16795 27 18 23 0
2.652484e-06 20123 27 12 28 10
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
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MaxSsc[grsz]
2.799751e-02 797 29 2 1 8
7.553152e-02 797 29 2 1 8
1.790392e-01 797 29 2 1 8
3.721536e-01 797 29 2 1 8
6.783295e-01 797 29 2 1 8
1.085470e+00 797 29 2 1 8
1.529413e+00 797 29 2 1 8
1.909451e+00 797 29 2 1 8
2.468806e+00 1214 30 15 1 6
5.320577e+00 1333 21 19 1 5
1.284085e+01 1302 22 18 1 8
1.103273e+01 1303 23 18 1 8
1.959958e+00 797 29 2 1 8
1.254158e+00 862 30 4 1 8
4.943639e-01 862 30 4 1 8
1.509054e-01 862 30 4 1 8
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0

MinParticleContrib[grsz]
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0
0.000000e+00 0 0 0 0 0

MinParticleContribNonZero[grsz]
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
8.594966e+09 22269 29 13 31 2
9.798612e+08 21923 3 3 31 6
1.543126e+04 4071 7 17 5 3
4.931165e+03 16427 11 7 23 6
1.564780e+03 22064 16 7 31 1
4.993780e+02 22436 4 19 31 4
1.584332e+02 15408 16 19 21 10
5.056048e+01 19644 28 19 27 0
1.615163e+01 16795 27 18 23 0
5.132346e+00 20123 27 12 28 10
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
1.000000e+10 0 0 0 0 0
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MaxParticleContrib[grsz]
1.529269e+12 797 29 2 1 8
1.314182e+12 797 29 2 1 8
9.924484e+11 797 29 2 1 8
6.573443e+11 797 29 2 1 8
3.816865e+11 797 29 2 1 8
1.946176e+11 797 29 2 1 8
8.736376e+10 797 29 2 1 8
3.476684e+10 797 29 2 1 8
1.432854e+10 1214 30 15 1 6
9.836793e+09 1333 21 19 1 5
7.575587e+09 1302 22 18 1 8
2.070442e+09 1303 23 18 1 8
1.171629e+08 797 29 2 1 8
2.391342e+07 862 30 4 1 8
3.002595e+06 862 30 4 1 8
2.919900e+05 862 30 4 1 8
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0
0.000000e+00 1 1 0 0 0

FindMinMaxOverAllTimeSteps 1

For a description of each test case used for the actual experiment of the user study

described in Chapter 4, see Table A.1. This table gives the index locations and area sizes

for each of the test cases. The quadrant location of the cell on the front wall of the CAVE

is also given in terms of Upper Left (UL), Upper Right (UR), Lower Left (LL), and Lower

Right (LR). The test cases included for the user study training and examples are presented

in Table A.2 and Table A.3.
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Table A.1 User Study Test Cases: Main Experiment.

Table A.2 User Study Test Cases: Training.
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Table A.3 User Study Test Cases: Examples.
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The test cases for the performance study described in Chapter 5 were all taken from

the Oceanside dataset, time step 5, dated 10/23/1995 08:18. This time step contained a

good range of sedimentation classes for the desired configurations. The specific test case

details are given in Table A.4.

Table A.4 Performance Study Test Cases.

I I J J Points
Num Description Low High Low High Layers Per Layer Resolutions

1 Shallow Region A 20 31 1 21 1-8 252 64x64
2 Shallow Region B 26 31 0 21 1-31 132 16x16
3 Shallow Region B 26 31 0 21 1-3 132 16x16, 32x32, 64x64, 128x128

For copyright permission information on the maps included in this appendix see

http://www.microsoft.com/permission/copyrgt/cop-img.htm#Maps. An excerpt from the

web page is shown in Figure A.7.
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Figure A.7 Microsoft Copyright Permission for Maps.



www.manaraa.com

APPENDIX B

DISTRIBUTION NORMALIZATION PROCESS

This Appendix describes the detailed steps taken to normalize the distributions for 18

Task 1 cases as shown in Table 4.2, and 12 Task 2 cases in Table 4.3. In the literature,

cases are often called treatments or conditions [15]. In order to use parametric statistical

methods, such as MANOVA, the distributions for each case must be considered normal

distributions [8, 59]. The distributions can be tested for normality at the .05 significance

level using SPSS Explore options. The distributions that fail can be adjusted using several

accepted approaches until they pass the normality test. The results of MANOVA testing

are valid with respect to the modified distributions, and the changes made with appropriate

justifications are stated in the results.

TheTime distributions tended to have most of the values to the left of the mean but

also trailing off to extremely long values as shown in Figure B.1 for Task 1 (the Task 2

distributions are similar). This means that the median was considerably less than the mean,

because the few longTime values shifted the mean to the right in the distribution. The

resulting statistics forTime are shown in Table B.1 for Task 1 and Table B.2 for Task

2. The extremely long values are considered outliers, but to include as many of them as

possible, a transformation can be used. A common transformation that is done for these

119
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types of distributions is alog10 transformation [59]. This was done as a first step for both

Task 1 and Task 2 data. This tends to bring outliers closer to the mean.

The remaining outliers can be handled by either deletion or modification. In prac-

tice, both approaches are used [59]. When examining the distributions based on sub-

ject, it was found that one subject in particular tended to have extremely longTime

values for almost all cases. Deleting this subject improved the normality tests for al-

most all distributions in both tasks, so the final analysis was done without this subject,

leaving 49 total. Other extreme outliers were adjusted individually until problem distri-

butions could pass the SPSS normality tests. In SPSS, outliers are identified in Stem-

and-Leaf plots, as well as Box plots. The criteria for determination is based on a con-

cept known as “Tukey’s Hinges” [59, 65]. In this approach a value that is outside a

range defined by1.5 ∗ InterquartileRange is considered to be an outlier, where the

InterquartileRange is the range of the middle 50% of the observations [25]. A value

outside more than3 ∗ InterquartileRange is considered to be an extreme. Both outliers

and extremes cause distributions to not be normal. In this case, all outliers and extremes

in the transformed distributions that were the result of extremely longTime values were

set to1.5 ∗ InterquartileRange. This has the effect of setting a maximum time cutoff for

each case. This improved all of the distributions considerably, but for a few cases there

were too many responses at extreme values for them to be considered normal. For Task 1,

Case 13, three additional outliers were set to the original distribution average value. For

Task 2, Case 1, two extremes were adjusted in this manner, and for Case 5, seven extremes
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Figure B.1 Histogram frequency distribution ofTime by Case for Task 1.



www.manaraa.com

122

Table B.1 Task 1 OriginalTime Statistics for 50 Users.
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Table B.2 Task 2 OriginalTime Statistics for 50 Users.

were adjusted. For these cases, the median was considerably smaller than the mean and

the average times of the original distributions were under five seconds. The resulting ad-

justedTime statistics for each of the distributions are shown in Table B.3 for Task 1 and

Table B.4 for Task 2.

When theHomogeneity of Varianceassumption is violated, SPSS computes corrected

values for the significance tests of within-subjects effects. Since all of the corrected val-

ues were highly significant, the conservative Greenhouse-Geisser corrected values were

reported and used for interpretation. Additionally the Bonferroni method was chosen to

control Type I pooled error rates in the results generated for pairwise comparisons [8].

Since the cumulative error rate multiplies with the number of comparisons, this means
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Table B.3 Task 1 AdjustedTime Statistics for 49 Users.
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Table B.4 Task 2 AdjustedTime Statistics for 49 Users.

that the overall desired error rate is divided by the number of comparisons to ensure that

the cumulative error rate remains below the desired error rate (either 0.01 or 0.05).
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APPENDIX C

ACCURACY INFORMATION

This Appendix describes the detailed steps taken to assign the values to theCorrect

variable. The distributions of subject intersections with the front wall of the CAVE are

shown in Figure C.1. The test cases are separated by method in the first two columns, with

all 50 subject responses in each plot, and the control distribution in the third column, with

20 responses covering the entire range acceptable in each plot. Subject responses outside

1.5 times the acceptable control range for thex andz directions were marked incorrect.

126
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Figure C.1 Accuracy Distributions for Task 1.
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APPENDIX D

SUMMARY STATISTICS

Additional graphs from the user study analysis are included forColor, Pattern, and

combination effects. Many of these are not significant results, but are included for com-

pleteness. The detailed SPSS generated MANOVA results are included in Appendix E.

Figure D.1 Task 1Time vs. Color for 50 subjects.
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Figure D.2 Task 1Correct vs. Method for 50 subjects.

Figure D.3 Task 1Correct vs. Color for 50 subjects.



www.manaraa.com

130

Figure D.4 Task 1Time vs. Color by Method for 50 subjects.

Figure D.5 Task 1Correct vs. Area by Method for 50 subjects.
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Figure D.6 Task 1Correct vs. Color by Method for 50 subjects.

Figure D.7 Task 2Time vs. Pattern for 50 subjects.
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Figure D.8 Task 2Correct vs. Pattern for 50 subjects.

Figure D.9 Task 2Time vs. Pattern by Method for 50 subjects.
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Figure D.10 Task 2Correct vs. Area by Method for 50 subjects.

Figure D.11 Task 2Correct vs. Pattern by Method for 50 subjects.
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APPENDIX E

SPSS OUTPUT

Task 1 and Task 2 MANOVA results are reported for 49 users usinglog10(Time) with

outliers adjusted as described in Appendix B. The Pooled error adjustment method is

the conservative Bonferroni method with power and confidence intervals computed for

α < 0.01.

Note that for the Task 1 univariate effect ofArea, theCorrect observed power was

0.944 atα < 0.05. For the Task 1 univariate effect ofColor, theCorrect observed power

was 0.946 atα < 0.05. For the Task1 univariate effect ofMethod ∗ Area ∗ Color, the

Correct observed power was 0.826 atα < 0.05. For the Task 2 univariate effect ofArea,

the Time observed power was 0.964 atα < 0.05. For the Task 2 univariate effect of

Area, theCorrect observed power was 0.895 atα < 0.05. Values of power above 0.8 are

considered adequate for research [10], although Field recommends a value above 0.9 [8].
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The Task 2 pairwise comparison of small to large areas indicated a nonsignificant re-

sult which would have been significant in the analysis using strictlyTime. This is because

some values ofTime were less than one second, resulting inlog10(Time) values less

than zero. When differences between distributions are taken that contain zero, generally
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the result is nonsignificant because values tend to cancel out. If the distribution had been

shifted slightly to all positive values, then the result would have been significant as in the

MANOVA for Time. Therefore this pairwise comparison is indicated as significant in the

analysis.
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